
T/XXX XXXX—XXXX

ICS 点击此处添加 ICS 号

CCS

点击此处添加 CCS 号

世 界 超 高 清 视 频 产 业 联 盟 团 体 标 准

T/XXX XXXX—XXXX

 支持六自由度交互的三维图像格式标准

3D Image Format Standard Supporting Six Degrees of Freedom (6DoF) Interaction

（征求意见稿）

在提交反馈意见时，请将您知道的相关专利连同支持性文件一并附上。

XXXX - XX - XX 发布 XXXX - XX - XX 实施

世界超高清视频产业联盟 发 布

T/XXX XXXX—XXXX

 I

目 次

前 言 ... IV

引 言 .. V

1 范围 .. 1

2 规范性引用文件 .. 1

3 术语和定义 .. 1

4 缩略语 .. 2

5 符号与运算 .. 3

 总体要求 .. 3

 算术运算符 .. 3

 逻辑运算符 .. 3

 关系运算符 .. 3

 位运算符 .. 4

 赋值 .. 4

 数学函数 .. 4

 结构关系符 .. 5

 位流语法的描述方法 .. 5

 函数 ... 7

5.10.1 byte_aligned() .. 7

5.10.2 next_start_code() ... 7

5.10.3 read_bits(n) .. 7

 描述符 ... 7

 保留、禁止和标记位 ... 7

6 支持六自由度交互的三维图像格式框架 .. 8

7 基于 glTF 的三维图像格式存储 ... 8

 概述 .. 8

 三维图元 .. 9

7.2.1 三维高斯泼溅 .. 9

7.2.1.1 概述 .. 9

7.2.1.2 glTF 存储三维高斯泼溅基础表达 .. 9

7.2.1.3 glTF 存储三维高斯泼溅压缩码流 ... 21

7.2.2 mesh/点云 ... 23

 HDR ... 23

7.3.1 概述 ... 23

7.3.2 HDR 静态元数据属性 ... 23

7.3.3 HDR 动态元数据属性 ... 24

7.3.4 HDR 静态元数据扩展 ... 24

7.3.5 HDR 动态元数据扩展 ... 24

T/XXX XXXX—XXXX

 II

 观看信息参数 .. 26

7.4.1 相机初始参数 .. 26

7.4.1.1 相机参数概述 .. 26

7.4.1.2 观看相机标签扩展 .. 26

7.4.2 相机轨迹参数 .. 27

7.4.2.1 相机轨迹参数概述 .. 27

7.4.2.2 相机轨迹外参 .. 28

7.4.2.3 相机轨迹内参扩展 .. 28

7.4.2.4 相机轨迹标签扩展 .. 28

7.4.3 观看约束信息 .. 29

7.4.3.1 观看约束信息概述 .. 29

7.4.3.2 观看约束信息扩展 .. 29

 音频 .. 33

7.5.1 音频特性描述 .. 33

7.5.2 音频媒体资产描述 .. 34

 渲染空间参数 .. 35

7.6.1 渲染有效空间参数 .. 35

7.6.2 渲染背景参数 .. 37

8 三维高斯泼溅压缩格式和解码 .. 40

 概述 .. 40

 三维高斯泼溅压缩格式码流结构 .. 40

 语法 .. 42

8.3.1 基础单元语法 .. 42

8.3.2 元数据语法 .. 43

8.3.2.1 通用元数据语法 .. 43

8.3.2.2 纹理解码信息和解包信息语法 .. 44

8.3.2.3 视频解码信息和解包信息语法 .. 45

8.3.2.4 表征重建信息语法 .. 46

8.3.3 子码流语法 .. 47

 语义 .. 47

8.4.1 基础单元语义 .. 47

8.4.2 元数据语义 .. 48

8.4.2.1 通用元数据语义 .. 48

8.4.2.2 纹理解码信息和解包信息语义 .. 49

8.4.2.3 视频解码信息和解包信息语义 .. 50

8.4.2.4 表征重建信息语义 .. 51

8.4.3 子码流语义 .. 51

 三维高斯泼溅压缩格式解码框架 .. 51

 解码过程 .. 53

8.6.1 码流解复用过程 .. 53

8.6.2 子码流解码过程 .. 53

8.6.2.1 通则 .. 53

8.6.2.2 子码流熵解码过程 .. 54

8.6.2.3 子码流纹理解码和解包过程 .. 54

T/XXX XXXX—XXXX

 III

8.6.2.4 子码流视频解码和解包过程 ... 57

8.6.3 表征重建过程 ... 57

9 基于 ISOBMFF的三维图像格式封装 ... 62

 概述 ... 62

 基于 ISOBMFF封装 glTF规范 .. 63

9.2.1 概述 ... 63

9.2.2 基于 ISOBMFF封装 glTF格式要求 .. 63

9.2.3 获取 glTF资产格式的过程 .. 64

 基于 MP4的三维图像格式封装实例 ... 64

9.3.1 概述 ... 64

9.3.2 封装视频 ... 65

9.3.3 封装封面 ... 65

9.3.4 封装 glTF三维图像格式 .. 65

 基于 HEIF的三维图像格式封装实例 .. 66

9.4.1 概述 ... 66

9.4.2 封装图片 ... 66

9.4.3 封装 glTF三维图像格式 .. 66

附 录 A （规范性） 档次 .. 67

A.1 概述 ... 67

A.2 档次 ... 67

附 录 B （资料性） 三维高斯泼溅的 HDR渲染参数使用推荐方案 68

参 考 文 献 ... 70

T/XXX XXXX—XXXX

IV

 前 言

本文件按照GB/T 1.1—2020《标准化工作导则 第1部分：标准化文件的结构和起草规则》的规定

起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

本文件由世界超高清视频产业联盟提出。

本文件由世界超高清视频产业联盟归口。

本文件起草单位：

本文件主要起草人：

T/XXX XXXX—XXXX

 V

 引 言

本文件的发布机构提请注意，声明符合本文件相关的专利的使用。专利名称如下：

本文件的发布机构对于该专利的真实性、有效性和范围无任何立场。

该专利持有人已向本文件的发布机构保证，其愿意同任何申请人在合理且无歧视的条款和条件 下，

就专利授权许可进行谈判。该专利持有人的声明已在本文件的发布机构备案，相关信息可以通过以下联

系方式获得：

T/XXX XXXX—XXXX

 1

支持六自由度交互的三维图像格式标准

1 范围

本文件规定了支持六自由度交互的三维图像的资产格式和文件格式。

本文件适用于以移动终端（手机）为主的支持六自由度交互的三维图像拍摄与重建、存储、编辑与

分享的使用场景，同时也适用于微型计算机、智能眼镜等设备的相关应用。

其中，支持六自由度交互的三维图像格式是指通过3D重建技术生成的物体/场景的三维照片，可以

在用户终端以六自由度方式进行交互呈现。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中，注日期的引用文件，

仅该日期对应的版本适用于本文件；不注日期的引用文件，其最新版本（包括所有的修改单）适用于本

文件。

ISO/IEC 12113:2022 信息技术—运行时三维资产交付格式（Information technology — Runtime 3D

asset delivery format — Khronos glTF™ 2.0）

ISO/IEC 14496-10 信息技术—视听对象的编码第10部分：高级视频编码 Information technology —

Coding of audio-visual objects — Part 10: Advanced Video Coding

ISO/IEC 14496-12 信息技术—视听对象编码第12部分： ISO基本媒体文件格式 (Information

technology — Coding of audio-visual objects — Part 12: ISO base media file format)

ISO/IEC 14496-14 信息技术—视听对象编码第14部分：MP4文件格式 (Information technology —

Coding of audio-visual objects — Part 14: MP4 file format)

ISO/IEC 23090-14:2023 信息技术—沉浸式媒体的编码表示 第 14 部分：场景描述（Information

technology — Coded representation of immersive media—Part 14: Scene description）

ISO/IEC 23008-12 信息技术 — MPEG系统技术 第 12 部分：图像文件格式（Information technology

— MPEG systems technologies - Part 12: Image File Format）

ISO/IEC 23008-2 信息技术 - 异构环境中的高效率编码和媒体传送 - 第2部分:高效率视频编码
(Information technology — High efficiency coding and media delivery in heterogeneous environments — Part

2: High efficiency video coding)

ISO/IEC 23090-3 信息技术.沉浸式媒体的编码表示法.第3部分:通用视频编(Information technology

— Coded representation of immersive media — Part 3: Versatile video coding)

GB/T 46269.1-2025 高动态范围（HDR）视频技术第1部分：元数据及适配ITU-R BT.2020-1 超高

清电视系统节目制作和国际交换的参数数值

ITU-R BT.709-6 节目制作和国际节目交换中使用高清晰度电视标准的参数值

ITU-R BT.1886 HDTV工作室制作中的平板显示器的参考光电转换功能（EOTF）

ITU-R BT.2100-3 用于制作和国际节目交换的高动态范围电视图像参考值

IEC 61966-2-1 多媒体系统和设备色彩测量和管理第2-1部分:色彩管理默认RGB色彩空间

SMPTE ST 2084:2014 – 高动态范围电光转换函数

CIE1931 XYZ标准色度系统

Khronos, KHR_animation_pointer,

https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_animation_pointer

Khronos, KHR_gaussian_splatting,

https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_gaussian_splatting

3 术语和定义

下列术语和定义适用于本文件。

https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_animation_pointer

T/XXX XXXX—XXXX

 2

网格 mesh

网格通过连接顶点形成三角形/多边形面片，可用于表示一个完整的3D对象。

点云 point cloud

点云是一种在三维空间中由大量离散点组成的数据集合，可用于表示一个完整的3D对象。

图元 primitives

glTF中构建3D模型的基础单元，通过定义顶点数据、绘制模式和材质来控制几何体的渲染方式。

三维高斯泼溅 3D Gaussian Splatting

三维高斯泼溅是一种基于可微光栅化的神经网络三维重建技术，通过参数化三维高斯基元集合来

表征三维场景的几何形态与外观特征，能够进行高保真、实时性的自由视角场景重建与视图合成。

 属性 attributes

glTF中表示的是顶点属性数据。包含了"NORMAL"、"POSITION"、"TEXCOORD_0"、"TANGENT"、“COLOR_0”、

“WEIGHTS_0”等数据对应的索引，其对应的数据类型和描述在"accessors"字段中的查询。

 扩展 extension

表示使用glTF的扩展，之后为扩展的标识和扩展内容。

 访存器 accessors

glTF中一个指定的访问器，定义了存储在缓冲区中的数据的类型和描述，它通过引用一个

bufferView对象，来指向实际的二进制数据。

 缓冲视图 bufferView

glTF中用于描述 原始二进制数据块（Buffer）中某一段数据 的结构。它定义了从 Buffer 中如何

截取一段数据，并指定这段数据的用途（如顶点坐标、索引、纹理等）。

 透视投影相机 Perspective Camera

3D计算机图形学中常用的一类相机模型，它模拟了人眼或真实相机的成像方式，能够呈现近大远小

的透视效果，使3D场景看起来更符合真实世界的视觉体验。glTF支持存储该类型相机。

 HDR元数据 HDR Metadata

与 HDR 视频一同存储的关键信息，它会告知显示设备内容的实际亮度、色彩和光线水平（如峰值

亮度 / 最大内容光级别、平均光线 / 最大帧平均光级别），从而实现精确的色调映射并提升图像质

量，尤其适用于不同性能的显示器。它区分了静态元数据（HDR10）和动态元数据（杜比视界、HDR10+），

其中动态元数据会逐场景进行调整。

 色彩空间 Color Space

色彩空间是一个经过定义的、有序的范围或系统，用于表示和再现颜色，它包括色域和传递函数两

部分，色域定义了设备如何在特定的边界（色域）内，使用特定的组件（如sRGB中的红、绿、蓝）来解

读和显示颜色，以确保在屏幕、打印机和相机等设备上进行一致的查看和编辑，传递函数定义了显示器

如何将线性域的颜色转换为非线性域的颜色以适应人眼对光的感受特点。

4 缩略语

下列缩略语适用于本文件
3DGS 三维高斯泼溅 (3D Gaussian Splatting)

T/XXX XXXX—XXXX

 3

DOF 自由度 (Degree of Freedom)

FOV 视场角 (Field of View)

glTF 图像库传输格式 (Graphic Library Transmission Format)

HDR 高动态范围 (High Dynamic Range)

HEIF 高效图像文件格式 (High Efficiency Image File Format)

LOD 细节层次 (Level of Detail)

SH 球谐系数 (Spherical Harmonics)

XFOV 水平视场角 (X-axis Field of View)

YFOV 垂直视场角 (Y-axis Field of View)

URI 统一资源标识符 (Uniform Resource Identifier)

5 符号与运算

总体要求

本文件中使用的数学运算符和优先级参照C语言。但对整型除法和算术移位操作进行了特定定

义。除特别说明外，约定编号和计数从0开始。

算术运算符

算术运算符定义见表1 。

表1 算术运算符定义

 算术运算符 定义

+ 加法运算

- 减法运算（二元运算符）或取反（一元前缀运算符）

 乘法运算

ab 幂运算，表示a的b次幂。也可表示上标

/ 整除运算，沿向0的取值方向截断。例如，7/4和-7/-4截断至1，-7/4和7/-4截断至-1

÷ 除法运算，不做截断或四舍五入

𝑎

𝑏

除法运算，不做截断或四舍五入

∑ 𝑓(𝑖)

𝑏

𝑖=𝑎

自变量i取由a到b（含b）的所有整数值时，函数𝑓(𝑖)的累加和

a % b 模运算，a除以b的余数，其中a与b都是正整数

⌊. ⌋ 下取整

逻辑运算符

逻辑运算符定义见表2 。

表2 逻辑运算符定义

逻辑运算符 定义

a && b a和b之间的与逻辑运算

a || b a和b之间的或逻辑运算

! 逻辑非运算

关系运算符

T/XXX XXXX—XXXX

 4

关系运算符定义见表3 。

表3 关系运算符定义

关系运算符 定义

> 大于

>= 大于或等于

< 小于

<= 小于或等于

== 等于

!= 不等于

位运算符

位运算符定义见表4 。

表4 位运算符定义

位运算符 定义

& 与运算

| 或运算

~ 取反运算

a >> b 将a以2的补码整数表示的形式向右移b位。仅当b取正数时定义此运算

a << b 将a以2的补码整数表示的形式向左移b位。仅当b取正数时定义此运算

赋值

赋值运算定义见表5 。

表5 赋值运算定义

赋值运算 定义

= 赋值运算符

++ 递增，x++相当于x = x + 1。当用于数组下标时，在自加运算前先求变量值

-- 递减，x--相当于x = x – 1。当用于数组下标时，在自减运算前先求变量值

+= 自加指定值，例如x += 3相当于x = x + 3，x += (-3)相当于x = x + (-3)

-= 自减指定值，例如x -= 3相当于x = x - 3，x -= (-3)相当于x = x - (-3)

数学函数

数学函数定义见公式（1）~公式（10）。

 Abs(𝑥) = {
x, x ≥ 0

−x, x < 0
 (1)

式中：

x——自变量。

Floor(𝑥) = ⌊𝑥⌋ (2)

式中：

x——自变量。

Clip3(i, j, x) = {

i, x < i
j, x > j

x,其他

 (3)

T/XXX XXXX—XXXX

 5

式中：

x——自变量；

i——下界；

j——上界。

Median(x, y, z) = x + y + z − Min(x, Min(y, z)) − Max(x, Max(y, z)) (4)

式中：

x——自变量；

y——自变量；

z——自变量。

 Min(x, y) = {
x, x ≤ y
y, x > y

 .. (5)

式中：

x——自变量；

y——自变量。

 Max(x, y) = {
x, x ≥ y
y, x < y

.. (6)

式中：

x——自变量；

y——自变量。

 Sign(x) = {
1, x ≥ 0

−1, x < 0
 ... (7)

式中：

x——自变量。

 Log(x) = log2x ... (8)

式中：

x——自变量。

 Ln(x) = logex .. (9)

式中：

x——自变量；

e——自然对数的底，其值为2.718281828…。

 pow(x, y) = xy ... (10)

式中：

x——自变量；

y——自变量。

结构关系符

结构关系符定义见表6 。

表6 结构关系符

结构关系符 定义

-> 例如：a->b表示a是一个结构，b是a的一个成员变量

位流语法的描述方法

位流语法描述方法类似C语言。位流的语法元素使用粗体字表示，每个语法元素通过名字（用下划

线分割的英文字母组，所有字母都是小写）、语法和语义来描述。语法表和正文中语法元素的值用常规

字体表示。

某些情况下，可在语法表中应用从语法元素导出的其他变量值，这样的变量在语法表或正文中用带

下划线的小写字母命名，或者用小写字母和大写字母混合命名。大写字母开头的变量用于解码当前以及

相关的语法结构，也可用于解码后续的语法结构。小写字母开头的变量只在当前以及相关的语法结构内

T/XXX XXXX—XXXX

 6

使用。

语法元素值的助记符和变量值的助记符与它们的值之间的关系在正文中说明。在某些情况下，二者

等同使用。

位串的长度是4的整数倍时，可使用十六进制符号表示。十六进制的前缀是“0x”，例如“0x1a”表

示位串“0001 1010”。

条件语句中0表示FALSE，非0表示TRUE。

语法表描述了所有符合本文件的位流语法的超集，附加的语法限制在相关条中说明。

表7 给出了描述语法的伪代码例子。当语法元素出现时，表示从位流中读一个数据单元。

表7 语法描述的伪代码

伪代码

/*语句是一个语法元素的描述符，或者说明语法元素的存在、类型和数值，下面给出两个例子。*/

syntax_element

conditioning statement

/*花括号括起来的语句组是复合语句，在功能上视作单个语句。*/

{

 statement

 …

}

/*“while”语句测试condition是否为TRUE，如果为TRUE，则重复执行循环体，直到condition不为
TRUE。*/

while (condition)

 statement

/*“do … while”语句先执行循环体一次，然后测试condition是否为TRUE，如果为TRUE，则重复执行
循环体，直到condition不为TRUE。*/

do

 statement

while (condition)

/*“if … else”语句首先测试condition，如果为TRUE，则执行primary语句，否则执行alternative语句。
如果alternative语句不需要执行，结构的“else”部分和相关的alternative语句可忽略。*/

if (condition)

 primary statement

else

 alternative statement

/*“for”语句首先执行initial语句，然后测试condition，如果conditon为TRUE，则重复执行primary语句
和subsequent语句直到condition不为TRUE。*/

for (initial statement； condition； subsequent statement)

 primary statement

解析过程和解码过程用文字和类似C语言的伪代码描述。

T/XXX XXXX—XXXX

 7

函数

5.10.1 byte_aligned()

如果位流的当前位置是字节对齐的，返回TRUE，否则返回FALSE。

5.10.2 next_start_code()

在位流中寻找下一个起始码，将位流指针指向起始码前缀的第一个二进制位。函数定义应符合表8

的规定。

表8 next_start_code 函数的定义

函数定义 描述符

next_start_code() {

stuffing_bit '1'

while (! byte_aligned())

stuffing_bit '0'

while (next_bits(24) != '0000 0000 0000 0000 0000 0001')

stuffing_byte '00000000'

}

stuffing_byte应出现图像头之后和第一个片起始码之前。

5.10.3 read_bits(n)

返回位流的随后n个二进制位，MSB在前，同时位流指针前移n个二进制位。如果n等于0，则返回0，

位流指针不前移。

描述符

描述符表示不同语法元素的解析过程，见表9 。

表9 描述符

描述符 说明

b(8) 一个任意取值的字节。解析过程由函数read_bits(8)的返回值规定

f(n) 取特定值的连续n个二进制位。解析过程由函数read_bits(n)的返回值规定

r(n) 连续n个‘0’。解析过程由函数read_bits(n)的返回值规定

u(n) n位无符号整数。在语法表中，如果n是“v”，其位数由其他语法元素值确定。解析过程由函数
read_bits(n)的返回值规定，该返回值用高位在前的二进制表示

i(n) n位有符号整数

st(n) n个UTF-8格式字符

fp(n) n位浮点数，n可以是16或者32

ur(64) 使用两个32位无符号数val1和val2，变量的值为val1/val2

ir(64) 使用一个32位有符号数val1和一个32位无符号数val2，变量的值为val1/val2

保留、禁止和标记位

本文件定义的位流语法中，某些语法元素的值被标注为“保留”（reserved）或“禁止”（forbidden）。

“保留”定义了一些特定语法元素值用于将来对本文件的扩展。这些值不应出现在符合本文件的位

流中。

“禁止”定义了一些特定语法元素值，这些值不应出现在符合本文件的位流中。

“标记位”（marker_bit）指该位的值应为‘1’。

T/XXX XXXX—XXXX

 8

位流中的“保留位”（reserved_bits）表明保留了一些语法单元用于将来对本文件的扩展，解码处理

应忽略这些位。

6 支持六自由度交互的三维图像格式框架

图1 支持六自由度交互的三维图像格式框架

本文件定义支持六自由度交互的三维图像的格式，包含基于glTF的三维图像格式，和封装glTF三维

图像格式的ISOBMFF文件格式。其中glTF存储既可作为独立格式使用，也可作为MP4或者HEIF封装中

的一项内容被使用。

使用glTF 格式作为三维图像格式时，其格式应符合本文件第 7 章的定义，且需符合 ISO/IEC

12113:2022 的相关规范。glTF 格式支持存储以下内容：

1. 3D 图元：支持三维高斯泼溅、网格（mesh）及点云的存储；

2. HDR 元数据扩展信息；

3. 观看信息参数：包含相机初始参数、相机轨迹参数及观看约束信息；

4. 音频数据；

5. 渲染空间参数。

其中，三维高斯泼溅数据支持两种存储方式：一是采用 glTF 直接存储三维高斯泼溅基础表达；二

是采用 glTF 存储三维高斯泼溅压缩码流格式，且压缩码流格式的内容需符合本文件第 8 章的定义。

本文件第 9 章定义基于 ISOBMFF 的封装三维图像文件格式规范，包括MP4文件格式和HEIF文件

格式。

7 基于 glTF 的三维图像格式存储

概述

使用 glTF 存储三维图像格式包含三维图元，HDR 元数据扩展，观看信息参数，音频和渲染空间参

数，遵循 ISO/IEC 12113:2022 规范，整体结构如图 2 所示。本文件规定的 glTF 存储三维图像格式在

传输和分享中可作为独立格式使用。

其中，三维图元存储在 glTF 中的 meshes/primitive 字段下，支持 mesh/点云等三维图元的表达，扩

展支持存储三维高斯泼溅数据的格式。

HDR 元数据扩展存储在 glTF 中，支持存储 HDR 静态元数据和动态元数据。

观看信息参数支持存储相机初始参数，相机轨迹参数和观看约束信息，其中相机初始参数存储在

T/XXX XXXX—XXXX

 9

glTF 的 nodes 和 cameras 字段下，相机轨迹参数存储在 glTF 的 animation 字段下，观看约束信息存储在

glTF 的 nodes 字段下的扩展。

音频，使用扩展字段存储在 glTF 中，支持存储音频特性描述（如声源特性、听者信息、音效信息

等），和音频媒体资产描述（如声源类型、播放控制、与媒体轨道的关联关系等）。

渲染空间参数，存储在 glTF 的 scene 字段下，支持存储渲染有效空间参数和渲染背景参数。

图2 glTF存储三维图像格式

三维图元

7.2.1 三维高斯泼溅

7.2.1.1 概述

三维高斯泼溅内容位于 glTF格式中 primitives字段下，描述了使用 glTF存储三维高斯泼溅的方法，

包含：

a) 使用现有字段和扩展字段存储三维高斯泼溅的基础表达；

b) 使用扩展字段存储三维高斯泼溅的压缩码流格式；

7.2.1.2 glTF 存储三维高斯泼溅基础表达

7.2.1.2.1 三维高斯泼溅的属性

三维高斯泼溅由多个高斯球组成，每个高斯球具有 Position，Opacity，Scale，Rotation 和球谐（SH）

系数属性[1]，如表 10 所示。

表10 三维高斯泼溅属性维度和数据类型

T/XXX XXXX—XXXX

 10

三维高斯泼溅属性 维度 数据类型

Position 3 float32

Opacity 1 float32

Scale 3 float32

Rotation 4 float32

SPHERICAL_HARMONICS_DEGREE_0_COEFFICIENT_0 3 float32

SPHERICAL_HARMONICS_DEGREE_1_COEFFICIENT_0 3 float32

SPHERICAL_HARMONICS_DEGREE_1_COEFFICIENT_0 3 float32

SPHERICAL_HARMONICS_DEGREE_1_COEFFICIENT_2 3 float32

SPHERICAL_HARMONICS_DEGREE_2_COEFFICIENT_0 3 float32

SPHERICAL_HARMONICS_DEGREE_2_COEFFICIENT_1 3 float32

SPHERICAL_HARMONICS_DEGREE_2_COEFFICIENT_2 3 float32

SPHERICAL_HARMONICS_DEGREE_2_COEFFICIENT_3 3 float32

SPHERICAL_HARMONICS_DEGREE_2_COEFFICIENT_4 3 float32

SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_0 3 float32

SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_1 3 float32

SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_2 3 float32

SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_3 3 float32

SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_4 3 float32

SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_5 3 float32

SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_6 3 float32

color_space 1 uint8

Position：定义高斯分布在 3D 空间中的中心点坐标（x,y,z），决定了该高斯在场景中的位置。

Opacity：控制高斯的透明程度（范围 0 到 1），0 表示完全透明，1 表示完全不透明；在混合多个高

斯时用于决定其贡献权重（alpha blending）。

Scale：定义高斯分布在三个轴上的缩放系数，控制高斯椭球形状的大小；

Rotation：用四元数（quaternion）表示高斯的方向，控制高斯椭球的朝向。

SPHERICAL_HARMONICS_DEGREE_ ℓ_COEFFICIENT_𝑛: 存球谐系数 ℓ 阶第𝑛 个分量的系数，

能记录高斯在不同光照方向和视角下的颜色变化。

color_space：定义三维场景图元的色彩属性，包括色域和转换函数。为了更好地对接三维场景渲染

与应用的其它图形渲染步骤，色彩空间定义应该与现有图形生态匹配，因此本设计色彩空间定义与

Khronos 标准组织的 Vulkan 标准中的色彩空间定义相对应。

7.2.1.2.2 三维高斯泼溅基础表达的组成

三维高斯泼溅基础表达包含使用现有字段和扩展字段存储三维高斯泼溅属性的方法，符合 ISO/IEC

T/XXX XXXX—XXXX

 11

12113:2022 规范。

ISO/IEC 12113:2022 规范中点云图元仅包含三维高斯泼溅的 Position。如图 3 所示，三维高斯泼溅

的基础表达设置 mode=0，复用 glTF 中点云图元的 POSITION 属性，其字段后对应的数字则指向对应的

accessor；通过 KHR_gaussian_splatting:OPACITY 字段扩展增加三维高斯泼溅的 Opacity 属性；通过

KHR_gaussian_splatting:SCALE 和 KHR_gaussian_splatting:ROTATION 字段扩展增加三维高斯泼溅的

Scale 和 Rotation 属性；通过 KHR_gaussian_splatting:SH_DEGREE_ℓ_COEF_𝑛 字段扩展增加三维高

斯泼溅的 SH 属性，这些字段对应的数字也指向对应的 accessor。通过 KHR_gaussian_splatting.colorSpace

字段扩展增加三维高斯泼溅的色彩空间属性。通过 KHR_gaussian_splatting.kernel 字段扩展增加三维高

斯泼溅的渲染核心形状属性。通过 KHR_gaussian_splatting.sortingMethod 字段扩展增加三维高斯泼溅的

排序方式属性。通过 KHR_gaussian_splatting.projection 字段扩展增加渲染过程中高斯球投影方式属性。

图3 三维高斯泼溅基础表达的存储结构

表11 glTF存储三维高斯泼溅基础表达

meshes{

 primitives{

 mode i(32)

 attributes{

 POSITION i(32)

 COLOR_0 i(32)

 KRH_gaussian_splatting:OPACITY i(32)

 KHR_gaussian_splatting:SCALE i(32)

 KHR_gaussian_splatting:ROTATION i(32)

 KHR_gaussian_splatting:SH_DEGREE_0_COEF_0 i(32)

 KHR_gaussian_splatting:SH_DEGREE_1_COEF_0 i(32)

 KHR_gaussian_splatting:SH_DEGREE_1_COEF_1 i(32)

 KHR_gaussian_splatting:SH_DEGREE_1_COEF_2 i(32)

 KHR_gaussian_splatting:SH_DEGREE_2_COEF_0 i(32)

 KHR_gaussian_splatting:SH_DEGREE_2_COEF_1 i(32)

T/XXX XXXX—XXXX

 12

 KHR_gaussian_splatting:SH_DEGREE_2_COEF_2 i(32)

 KHR_gaussian_splatting:SH_DEGREE_2_COEF_3 i(32)

 KHR_gaussian_splatting:SH_DEGREE_2_COEF_4 i(32)

 KHR_gaussian_splatting:SH_DEGREE_3_COEF_0 i(32)

 KHR_gaussian_splatting:SH_DEGREE_3_COEF_1 i(32)

 KHR_gaussian_splatting:SH_DEGREE_3_COEF_2 i(32)

 KHR_gaussian_splatting:SH_DEGREE_3_COEF_3 i(32)

 KHR_gaussian_splatting:SH_DEGREE_3_COEF_4 i(32)

 KHR_gaussian_splatting:SH_DEGREE_3_COEF_5 i(32)

 KHR_gaussian_splatting:SH_DEGREE_3_COEF_6 i(32)

 }

 extensions{

 KHR_gaussian_splatting {

 kernel st(n)

 colorSpace st(n)

 sortingMethod st(n)

 projection st(n)

 }

}

}

表12 extensionsUsed 列表中声明 KHR_gaussian_splatting

定义 描述符

extensionsUsed{

 KHR_gaussian_splatting

}

其中，

meshes： 结构体，表示场景内的 Mesh 点云等几何体，包含了构建一个网格所需要的数据"primitives"，

这个数据可以有多个图元的信息，符合 ISO/IEC 12113:2022 中的定义。

primitives: 结构体，是构建 3D 模型的基础单元，通过定义顶点数据、绘制模式和材质来控制几何

体的渲染方式。符合 ISO/IEC 12113:2022 中的定义。包含的数据有"attributes"顶点属性数据对应的 buffer

的索引、"indices"顶点的索引数据 buffer 的索引、"mode"绘制模式、"material"材质对应的索引。

 mode: 32 位有符号整数，取值等于 0，表示绘制方式为 POINTS，复用 glTF 中点云图元的 POSITION

属性。为支持在不支持三维高斯泼溅渲染时的点云回退渲染，可以保留点云的 COLOR_0 颜色属性

（RGB 或 RGBA）。符合 ISO/IEC 12113:2022 中的定义。

attributes：结构体，表示的是顶点属性数据，符合 ISO/IEC 12113:2022 中的定义。包含了"NORMAL"、

T/XXX XXXX—XXXX

 13

"POSITION"、"TEXCOORD_0"、"TANGENT"、“COLOR_0”、“WEIGHTS_0”等数据对应的索引，其对

应的数据类型和描述在"accessors"字段中的查询。三维高斯泼溅数据格式使用"POSITION"和“COLOR_0”

字段。

POSITION：32 位有符号整数，其值为索引对应 POSITION 的 accessors，表示的是 XYZ 顶点位置，

符合 ISO/IEC 12113:2022 中的定义。

COLOR_0：32 位有符号整数，其值为索引对应 POSITION 的 accessors，表示的是顶点颜色，符合

ISO/IEC 12113:2022 中的定义。

extension：结构体，表示 glTF 的扩展，之后为扩展的标识和扩展内容，符合 ISO/IEC 12113:2022 中

的定义。

accessors：结构体，一个指定的访问器，定义了存储在缓冲区中的数据的类型和描述，它通过引用

一个 bufferView 对象，来指向实际的二进制数据，符合 ISO/IEC 12113:2022 中的定义。

三维高斯泼溅中 POSITION 和 COLOR_0 对应的 accessors 应满足表 13 和表 14 的定义。其中 M

为“MUST”，表示必须存在字段，O 为“Optional”，表示可选的字段。

表13 POSITION accessors 的定义

名字 类型 默认值 用法 描述

bufferView integer N/A M 其值指向 bufferViews 中的数据块，

表示对 Buffer 的特定数据段的引

用，通过 offset （偏移量）和

byteLength（长度）标记其在 Buffer

中的起始位置和范围

componentType integer 5126 M 其值表示当前数据元素的底层存

储类型

type string VEC3 M 其值表示当前数据元素逻辑结构

是标量，矢量或者矩阵

count integer N/A M 其值等于三维高斯泼溅的数目

min number [1-

16]

N/A M 最小数组大小取决于类型定义的

type，其值等于三维高斯泼溅中

position 的每个维度的最小值

max number [1-

16]

N/A M 最大数组大小取决于类型定义的

type，其值等于三维高斯泼溅中

position 的每个维度的最大值

表14 COLOR_0 accessors的定义

名字 类型 默认值 用法 描述

bufferView integer N/A M 其值指向 bufferViews 中的

数据块，表示对 Buffer 的特

定数据段的引用，通过 offset

T/XXX XXXX—XXXX

 14

（偏移量）和 byteLength（长

度）标记其在 Buffer 中的起

始位置和范围

componentType integer 5126 M 其值表示当前数据元素的底

层存储类型

type string VEC4 M 其值表示当前数据元素逻辑

结构是标量，矢量或者矩阵

count integer N/A M 其值等于三维高斯泼溅的数

目

7.2.1.2.3 透明度扩展

KHR_gaussian_splatting:OPACITY ，支持三维高斯泼溅透明度的扩展字段，该属性为归一化数值，

取值范围为 0.0（完全透明）到 1.0（完全不透明）。在三维高斯泼溅的训练过程中，通过应用 sigmoid

激活函数以确保该数值始终保持在上述有效范围内。超出该范围的取值为无效值。该约束保证了渲染器

可以直接使用存储的不透明度值进行 alpha 混合，而无需进行额外的数值处理。该字段符合 ISO/IEC

12113:2022 规范。

表15 KHR_gaussian_splatting:OPACITY字段的定义

名字 类型 默认值 用法 描述

 KHR_gaussian_splatting:OPACITY integer N/A M 其 值 为 索 引 对 应

OPACITY 的 accessors，

用于表示三维高斯泼溅

的不透明度

三维高斯泼溅中 KHR_gaussian_splatting:OPACITY 对应的 accessors 应满足表 16 的定义。

表16 KHR_gaussian_splatting:OPACITY accessors的定义

名字 类型 默认值 用法 描述

bufferView integer N/A M 其值指向 bufferViews 中的

数据块，表示对 Buffer 的特

定数据段的引用，通过 offset

（偏移量）和 byteLength（长

度）标记其在 Buffer 中的起

始位置和范围

componentType integer 5126 M 其值表示当前数据元素的底

层存储类型

type string SCALAR M 其值表示当前数据元素逻辑

T/XXX XXXX—XXXX

 15

结构是标量，矢量或者矩阵

count integer N/A M 其值等于三维高斯泼溅的数

目

其中 bufferView 中指向的数据块紧密排列，即每个元素的分量连续存储，元素之间无间隔。

7.2.1.2.4 高斯形状扩展

KHR_gaussian_splatting：SCALE：支持三维高斯泼溅高斯核尺寸 SCALE 的扩展字段，该属性以对

数空间（log-space）形式存储。因此，三维高斯椭球在每个主轴方向上的实际尺度值通过对该属性取指

数运算（exp(scale)）计算得到。该字段符合 ISO/IEC 12113:2022规范。KHR_gaussian_splatting:ROTATION：

支持三维高斯泼溅高斯核旋转 ROTATION 的扩展字段，该属性以单位四元数的形式存储，分量顺序为

(x, y, z, w)，其中 w 为标量分量。该字段符合 ISO/IEC 12113:2022 规范。

表17 KHR_gaussian_splatting:SCALE 和 KHR_guassian_splatting:ROTATION字段的定义

名字 类型 默认值 用法 描述

KHR_gaussian_splatting :

SCALE

integer N/A M 其值为索引对应 SCALE

的 accessors，用于表示三

维高斯泼溅的形状参数

KHR_gaussian_splatting :

ROTATION

integer N/A M 其 值 为 索 引 对 应

ROTATION 的 accessors，

用于表示三维高斯泼溅的

旋转参数

三维高斯泼溅中 KHR_gaussian_splatting:SCALE 和 KHR_gaussian_splatting:ROTATION 对应的

accessors 应满足表 18 和表 19 的定义。

表18 KHR_gaussian_splatting:SCALE的定义

名字 类型 默认值 用法 描述

bufferView integer N/A M 其值指向 bufferViews 中的

数据块，表示对 Buffer 的特

定数据段的引用，通过 offset

（偏移量）和 byteLength（长

度）标记其在 Buffer 中的起

始位置和范围

componentType integer 5126 M 其值表示当前数据元素的底

层存储类型

type string VEC3 M 其值表示当前数据元素逻辑

结构是标量，矢量或者矩阵

count integer N/A M 其值等于三维高斯泼溅的数

目

T/XXX XXXX—XXXX

 16

其中 bufferView 中指向的数据块紧密排列，即每个元素的三个分量连续存储，元素之间无间隔。

表19 UWA_guassian_splatting:ROTATION accessors的定义

名字 类型 默认值 用法 描述

bufferView integer N/A M 其值指向 bufferViews 中的

数据块，表示对 Buffer 的特

定数据段的引用，通过 offset

（偏移量）和 byteLength（长

度）标记其在 Buffer 中的起

始位置和范围

componentType integer 5126 M 其值表示当前数据元素的底

层存储类型

type string VEC4 M 其值表示当前数据元素逻辑

结构是标量，矢量或者矩阵

count integer N/A M 其值等于三维高斯泼溅的数

目

其中 BufferView 中指向的数据块紧密排列，即每个元素的四个分量连续存储，元素之间无间隔。

7.2.1.2.5 球谐系数扩展

KHR_gaussian_splatting:SH_DEGRRE_ℓ_COEF_𝑛：支持三维高斯泼溅球谐函数的扩展字段，该字段

符合 ISO/IEC 12113:2022 规范；其内容包含 16 个字段，其中 ℓ 为阶数，取值的范围为 0-3；𝑛为当前阶

数下的系数分量；其中 ℓ 为 0 阶时，n 取值为 0；其中 ℓ 为 1 阶时，n 取值为 0,1,2；其中 ℓ 为 2 阶时，

n 取值为 0,1,2,3,4；其中 ℓ 为 3 阶时，n 取值为 0,1,2,3,4,5,6；

表20 KHR_gaussian_splatting:SH_DEGRRE_ℓ_COEF_𝑛 扩展的定义

名字 类型 默认值 用法 描述

KHR_gaussian_splatting:SH_DEGRRE_0_COEF_0 integer N/A M 球谐函数 0 阶

的颜色

KHR_gaussian_splatting:SH_DEGRRE_1_COEF_0 integer N/A M 球谐函数 1 阶

的第 0 分量颜

色

KHR_gaussian_splatting:SH_DEGRRE_1_COEF_1 integer N/A M 球谐函数 1 阶

的第 1 分量颜

色

KHR_gaussian_splatting:SH_DEGRRE_1_COEF_2 integer N/A M 球谐函数 1 阶

的第 2 分量颜

色

T/XXX XXXX—XXXX

 17

KHR_gaussian_splatting:SH_DEGRRE_2_COEF_0 integer N/A M 球谐函数 2 阶

的第 0 分量颜

色

KHR_gaussian_splatting:SH_DEGRRE_2_COEF_1 integer N/A M 球谐函数 2 阶

的第 1 分量颜

色

KHR_gaussian_splatting:SH_DEGRRE_2_COEF_2 integer N/A M 球谐函数 2 阶

的第 2 分量颜

色

KHR_gaussian_splatting:SH_DEGRRE_2_COEF_3 integer N/A M 球谐函数 2 阶

的第 3 分量颜

色

KHR_gaussian_splatting:SH_DEGRRE_2_COEF_4 integer N/A M 球谐函数 2 阶

的第 4 分量颜

色

KHR_gaussian_splatting:SH_DEGRRE_3_COEF_0 integer N/A M 球谐函数 3 阶

的第 0 分量颜

色

KHR_gaussian_splatting:SH_DEGRRE_3_COEF_1 integer N/A M 球谐函数 3 阶

的第 1 分量颜

色

KHR_gaussian_splatting:SH_DEGRRE_3_COEF_2 integer N/A M 球谐函数 3 阶

的第 2 分量颜

色

KHR_gaussian_splatting:SH_DEGRRE_3_COEF_3 integer N/A M 球谐函数 3 阶

的第 3 分量颜

色

KHR_gaussian_splatting:SH_DEGRRE_3_COEF_4 integer N/A M 球谐函数 3 阶

的第 4 分量颜

色

KHR_gaussian_splatting:SH_DEGRRE_3_COEF_5 integer N/A M 球谐函数 3 阶

的第 5 分量颜

色

T/XXX XXXX—XXXX

 18

KHR_gaussian_splatting:SH_DEGRRE_3_COEF_6 integer N/A M 球谐函数 3 阶

的第 6 分量颜

色

表21 每个球谐字段对应 accessors的定义

名字 类型 默认值 用法 描述

bufferView integer N/A M 其值指向bufferViews中的数

据块，表示对 Buffer 的特定

数据段的引用，通过 offset

（偏移量）和 byteLength（长

度）标记其在 Buffer 中的起

始位置和范围

componentType integer 5126 M 其值表示当前数据元素的底

层存储类型

type string VEC3 M 其值表示当前数据元素逻辑

结构是标量，矢量或者矩阵。

count integer N/A M 其值表示高阶球谐的总数

目，等于三维高斯泼溅的数

目 乘 以 3 ∗ [(SHdegree +

1)2 − 1]

其中 BufferView 中指向的数据块紧密排列，每一个 SH 字段中，一个高斯球对应3个元素，每个高

斯球的所有元素连续存储，每个高斯球之间无间隔。

7.2.1.2.6 渲染属性扩展

在 primitives 下的 extensions 字段使用 KHR_gaussian_splatting 扩展，支持 glTF 存储三维高斯泼溅

的渲染属性。

表22 KHR_gaussian_splatting扩展下的字段

extensions {

 KHR_gaussian_splatting {

 kernel st(n)

 colorSpace st(n)

 sortingMethod st(n)

 projection st(n)

 }

T/XXX XXXX—XXXX

 19

}

表23 KHR_gaussian_splatting扩展字段的定义

名字 类型 默认值 用法 描述

kernel string “ellipse” O 取值代表 3DGS 对象所渲

染过程中的渲染核心形状

colorSpace string “srgb_rec709_display” O 取值代表 3DGS 对象所在

色彩空间，即所在色域和

使用何种转换函数

sortingMethod string “cameraDistance” O 取值代表 3DGS 对象所渲

染过程中的排序方法

projection string “perspective” O 取值代表 3DGS 对象投影

到核心形状的方式

KHR_gaussian_splatting.kernel：支持三维高斯泼溅渲染核心形状的扩展字段，该字段符合 ISO/IEC

12113:2022 规范，取值范围如表 24 所示。

表24 KHR_gaussian_splatting.kernel字段的取值

名字 描述

ellipse 2D 椭圆形状，用于在 3D 空间中投影一个椭圆形状。

通过新定义扩展方式定义新的渲染核心形状实现如下：

表25 通过新定义扩展方式定义新的渲染核心形状

extensions {

KHR_gaussian_splatting {

 kernel str

 extensions {

 UWA_guassian_splatting_kernel_customShape {

 }

 }

}

KHR_gaussian_splatting.colorSpace：支持三维高斯泼溅色彩空间的扩展字段，该字段符合 ISO/IEC

12113:2022 规范， KHR_gaussian_splatting.colorSpace 为色彩空间字符串枚举值，取值范围分为基础和

扩展两部分，基础取值如表 26 所示，扩展取值如表 27 所示，在不作额外说明时均为 display-referred

颜色。

表26 KHR_gaussian_splatting.colorSpace字段取值（基础）

取值 描述

T/XXX XXXX—XXXX

 20

srgb_rec709_display
使用在 ITU-R 709 标准中定义的色域；

使用 IEC61966-2-1 标准中定义的 sRGB 传递函数编码的非线性域颜色

lin_rec709_display
使用在 ITU-R 709 标准中定义的色域，未经编码的线性域颜色；

scene-referred

扩展 colorSpace 属性的广色域色彩空间选项，如表 27 所示。

表27 扩展 colorSpace属性的广色域色彩空间选项

取值 描述

BT.2020-ITU 使用在 ITU-R BT.2020 标准中定义的色域；

使用 ITU-R BT.1886 标准中定义的传递函数编码的非线性域颜色

BT.2020-linear 使用在 ITU-R BT. 2100 标准中定义的色域，未经编码的线性域颜色

BT.2100-PQ 使用在 ITU-R BT. 2100 标准中定义的色域；

使用在SMPTE ST.2084标准中定义的传递函数编码的非线性域颜色

BT.2100-HLG 使用在 ITU-R BT. 2100 标准中定义的色域；

使用在 ITU-R BT. 2100 标准中定义的传递函数编码的非线性域颜色

Display-P3 使用在 Display-P3 标准中定义的色域和传递函数

KHR_gaussian_splatting_wide_gamut_color扩展为KHR_gaussian_splatting扩展添加了广色域色彩支

持。

当存在处于不同色彩空间的三维高斯泼溅需要混合渲染时，推荐的渲染方案见附录 B.2。

表28 定义新扩展表示扩展的色彩空间组合

extensions {

KHR_gaussian_splatting {

 colorSpace st(n)

 sortingMethod st(n)

 projection st(n)

 extensions {

 KHR_gaussian_splatting_wide_gamut_color {

 }

 }

}

KHR_gaussian_splatting.sortingMethod：支持三维高斯泼溅渲染过程高斯球排序方式的扩展字段，该

字段符合 ISO/IEC 12113:2022 规范，取值范围如表 29 所示。

表29 KHR_gaussian_splatting.sortingMethod字段取值

名字 描述

cameraDistance 渲染过程中根据高斯球到相机原点的距离长度，对高斯球进行排序

T/XXX XXXX—XXXX

 21

zDepth 渲染过程中根据高斯球位置属性的 z 分量的大小，对高斯球进行排序

KHR_gaussian_splatting.projection：支持三维高斯泼溅渲染过程高斯球投影方式的扩展字段，该字

段符合 ISO/IEC 12113:2022 规范，取值范围如表 30 所示。

表30 KHR_gaussian_splatting.projection字段取值

名字 描述

perspective 渲染过程基于透视投影

orthographic 渲染过程基于正交投影

7.2.1.3 glTF 存储三维高斯泼溅压缩码流

7.2.1.3.1 glTF 存储三维高斯泼溅压缩码流格式字段和语义

UWA_gaussian_splatting_compression 扩展：用于在 glTF 中存储三维高斯泼溅压缩码流格式。三维

高斯泼溅压缩码流格式解码方法见 8.2；通过 bufferView 指向对应数据内容，即三维高斯泼溅压缩之后

的码流，其格式见 8.1。

UWA_gaussian_splatting_compression 扩展位于 primitives 字段下的 extensions 中。其中，bufferView

字段符合 ISO/IEC 12113:2022 标准 5.11 章节的定义。

表31 glTF存储三维高斯泼溅压缩码流格式的字段

定义 描述符

meshes{

 primitives{

 mode i(32)

 attributes{

 POSITION i(32)

 COLOR_0 i(32)

 KHR_gaussian_splatting:OPACITY i(32)

 KHR_gaussian_splatting:SCALE i(32)

 KHR_gaussian_splatting:ROTATION i(32)

 KHR_gaussian_splatting:SH_DEGREE_0_COEF_0 i(32)

 KHR_gaussian_splatting:SH_DEGREE_1_COEF_0 i(32)

 KHR_gaussian_splatting:SH_DEGREE_1_COEF_1 i(32)

 KHR_gaussian_splatting:SH_DEGREE_1_COEF_2 i(32)

 KHR_gaussian_splatting:SH_DEGREE_2_COEF_0 i(32)

 KHR_gaussian_splatting:SH_DEGREE_2_COEF_1 i(32)

 KHR_gaussian_splatting:SH_DEGREE_2_COEF_2 i(32)

 KHR_gaussian_splatting:SH_DEGREE_2_COEF_3 i(32)

T/XXX XXXX—XXXX

 22

 KHR_gaussian_splatting:SH_DEGREE_2_COEF_4 i(32)

 KHR_gaussian_splatting:SH_DEGREE_3_COEF_0 i(32)

 KHR_gaussian_splatting:SH_DEGREE_3_COEF_1 i(32)

 KHR_gaussian_splatting:SH_DEGREE_3_COEF_2 i(32)

 KHR_gaussian_splatting:SH_DEGREE_3_COEF_3 i(32)

 KHR_gaussian_splatting:SH_DEGREE_3_COEF_4 i(32)

 KHR_gaussian_splatting:SH_DEGREE_3_COEF_5 i(32)

 KHR_gaussian_splatting:SH_DEGREE_3_COEF_6 i(32)

 }

 extensions{

 UWA_gaussian_splatting_compression{

 bufferView i(32)

 }

}

}

表32 UWA_gaussian_splatting_compression扩展的定义

名字 类型 默认值 用法 描述

bufferView integer N/A M 其值指向 bufferViews 中的数据块，表

示对 Buffer 的特定数据段的引用，通过

offset（偏移量）和 byteLength（长度）

标记其在 Buffer 中的起始位置和范围

表33 UWA_gaussian_splatting_compression 扩展中 attributes结构体的定义

名字 类型 默认值 用法 描述

buffer integer N/A M 其值为索引对应 buffer，表示的是压缩

码流存储在 glTF 中的对应 buffer 块

byteLength integer N/A M 其值为压缩码流的字节长度

byteOffset integer 0 O 其值为压缩码流的字节偏移，当没有

偏移的时候无需该字段

7.2.1.3.2 glTF 存储三维高斯泼溅压缩码流格式解码

T/XXX XXXX—XXXX

 23

使用三维高斯泼溅压缩码流格式进行解码的步骤如下：

1）识别 UWA_gaussian_splatting_compression 字段，判断是否存在三维高斯泼溅压缩码流。

2）解析扩展中的三维高斯泼溅压缩数据。

根据 bufferView 获取三维高斯泼溅压缩数据，解析 bufferView 中对应的压缩码流数据的位置索引

字段，即 buffer，byteLength 和 byteOffset，获取全部压缩数据。

3）将三维高斯泼溅压缩数据依据 8.2 的解码方式进行解码，得到解码数据。

7.2.2 mesh/点云

符合 ISO/IEC 12113:2022 标准 5.23 章节的定义。

HDR

7.3.1 概述

HDR 元数据属性在 GB/T 46269.1-2025 标准中定义，包含静态元数据、动态元数据。

根据 glTF 文件中的 HDR 元数据选择对三维高斯泼溅作 HDR 或 SDR 渲染的推荐方案见附录 B.1。

确定渲染视角的 HDR 元数据的推荐方案见附录 B.3。

7.3.2 HDR 静态元数据属性

HDR 静态元数据定义如下：

表34 HDR静态元数据属性维度与数据类型

HDR 静态元数据属性 维度 数据类型

display_primaries_x 3 uint16

display_primaries_y 3 uint16

white_point_x 1 uint16

white_point_y 1 uint16

max_display_mastering_luminance 1 uint16

min_display_mastering_luminance 1 uint16

max_content_light_level 1 uint16

max_picture_average_light_level 1 uint16

display_primaries_x：显示设备三基色 X 坐标，该坐标在 CIE1931 XYZ 标准色度系统中定义。三维

分别对应绿、蓝、红三色。

display_primaries_y：显示设备三基色 Y 坐标，该坐标在 CIE1931 XYZ 标准色度系统中定义。三维

分别对应绿、蓝、红三色。

white_point_x：显示设备标准白光 X 坐标，显示设备标准白光 Y 坐标。分别表示归一化后的显示

设备标准白光的色度 x 坐标和 y 坐标。该坐标在 CIE 1931 标准中定义。

white_point_y：显示设备标准白光 Y 坐标，显示设备标准白光 Y 坐标。分别表示归一化后的显示

设备标准白光的色度 x 坐标和 y 坐标。该坐标在 CIE 1931 标准中定义。

max_display_mastering_luminance：显示设备最大显示亮度。以 1cd/m2 为单位，范围从 1cd/m2 到

65535cd/m2 。

min_display_mastering_luminance：显示设备最小显示亮度。表示显示设备的最小显示亮度。以

0.0001cd/m2 为单位，范围从 0.0001cd/m2到 6.5535cd/m2。

T/XXX XXXX—XXXX

 24

max_content_light_level：表示显示内容的最大亮度。以1cd/m2为单位，范围从1cd/m2到65535cd/m2。

max_picture_average_light_level：显示内容最大图像平均亮度。表示显示内容的最大图像平均亮度。

以 1cd/m2 为 单位，范围从 1cd/m2 到 65535cd/m2 。

7.3.3 HDR 动态元数据属性

HDR 动态元数据在 GB/T 46269.1-2025 标准中定义。

7.3.4 HDR 静态元数据扩展

UWA_hdr_static_metadata 扩展，用于储存 HDR 静态元数据属性，符合 ISO/IEC 12113:2022 规范。

通过 gltf 字段的扩展字段保存：

表35 glTF保存静态元数据的字段

定义 描述符

{

 extensions {

 UWA_hdr_static_metadata {

 display_primaries_x u(16)

 display_primaries_y u(16)

 white_point_x u(16)

 white_point_y u(16)

 max_display_mastering_luminance u(16)

 min_display_mastering_luminance u(16)

 max_content_light_level u(16)

 max_picture_average_light_level u(16)

 }

 }

}

7.3.5 HDR 动态元数据扩展

使用 gltf 字段的扩展字段 UWA_hdr_vivid_dynamic_metadata 扩展，用于存储 HDR VIVID 动态元数

据属性，该字段符合 ISO/IEC 12113:2022 规范。

表36 glTF储存 HDR动态元数据的字段

定义 描述符

{

 extensions {

 UWA_hdr_static_metadata {

 ……

T/XXX XXXX—XXXX

 25

 }，

 UWA_hdr_vivid_dynamic_metadata {

 bufferView u(32)

 staticMetadata u(32)

 camera u(32)

 rotation f(32)x4

 translation f(32)x3

 }

 }

}

表37 UWA_hdr_vivid_dynamic_metadata扩展定义

名字 类型 默认值 用

法

描述

bufferView integer N/A M 其值指向 bufferViews

中的数据块，表示对

Buffer 的特定数据段的

引用，通过 offset（偏移

量）和 byteLength（长

度）标记其在 Buffer 中

的起始位置和范围

staticMetadata integer N/A M 索引值指向 HDR 静态

元数据扩展数组中与

之关联的静态元数据

camera integer N/A O 索引值指向 camera 字

段中与之关联的相机

内参

rotation array N/A M 与 HDR 动态元数据关

联的相机外参中旋转

分量的四元数

translation array N/A M 与 HDR 动态元数据关

联的相机外参中平移

分量的 x,y,z 分量

T/XXX XXXX—XXXX

 26

bufferView 所指向数据块为所保存二进制文件中 HDR VIVID 动态元数据段落，其定义满足 7.3.3 节

内容。

表38 UWA_hdr_vivid_dynamic_metadata 扩展中 attribute结构体定义

名字 类型 默认值 用法 描述

buffer integer N/A M 其值为索引对应 buffer，表示的是 HDR 动态

元数据码流存储在 glTF 中的对应 buffer 块

byteLength integer N/A M 其值为 HDR 动态元数据码流的字节长度

byteOffset integer 0 O 其值为 HDR 动态元数据码流的字节偏移，当

没有偏移的时候无需该字段

观看信息参数

观看所需参数，包括：相机初始参数、相机轨迹参数和观看约束信息。

7.4.1 相机初始参数

7.4.1.1 相机参数概述

相机参数包括相机的内参和相机的外参，用于在三维场景渲染过程中准确重建相机的位置、方向以

及视野。

1）相机内参：透视投影相机的宽高比、相机视场角等；正交投影相机的水平半宽和垂直半高等。

2）相机外参：用户观看三维图像的相机位姿，包括相机的中心坐标，相机光轴的朝向。

相机内参的存储符合 ISO/IEC 12113:2022 标准 5.12 章节的定义。

相机外参的存储符合 ISO/IEC 12113:2022 标准 5.17 章节的定义。

7.4.1.2 观看相机标签扩展

glTF 的 nodes 字段存储一个或多个相机参数，UWA_user_camera_label 扩展用于指示每个相机节

点的标签信息，包括：

1) 相机类型参数：标识对应相机是否为观看相机。

2) 推荐呈现设备：标识对应相机的推荐呈现设备。

UWA_user_camera_label 扩展位于 nodes 字段下的 extensions 字段下。该扩展用于提供观看与呈现

相关的提示性信息，应用在加载和解析过程中可选择性使用或忽略该扩展，即使忽略该扩展，也不应影

响资产的正确加载与基本显示。

表39 UWA_user_camera_label扩展的定义

定义 描述符

extensions {

UWA_user_camera_label{

 default boolean

 devices n x st(n)

 }

}

其中，default 和 devices 字段的定义如表 40 所示。

T/XXX XXXX—XXXX

 27

表40 UWA_user_camera_label扩展下的字段的定义

名字 类型 默认值 用法 描述

default boolean N/A O 其值标识相机节点是否为观

看相机。取值如下：

true：相机节点是观看相机，

其相机参数满足相机初始参

数的要求

false：相机节点不是观看相

机，其相机参数不满足相机

初始参数的要求

devices array N/A O 其值显示相机节点的推荐观

看相机。取值如下：

“phone”：手机类移动设备

“hmd”：头戴式显示设备

“tablet”： 平板设备

“tv”： 电视或大屏显示设备

“pc”： 桌面或笔记本计算机

表41 extensionsUsed 列表中声明 UWA_user_camera_label

定义 描述符

extensionsUsed{

UWA_user_camera_label

}

7.4.2 相机轨迹参数

7.4.2.1 相机轨迹参数概述

相机轨迹参数提供统一、可复现的相机运动描述，以支持在不同播放环境中实现一致的动态观看体

验。相机轨迹用于描述相机在时间上的变化，包括相机在空间中的位姿变化，以及相机内参随时间的变

化。

上述轨迹参数可包含对应重建相机的真实采集轨迹，和经处理、规划或计算得到的非采集轨迹。包

括：

1) 相机的外参（位姿）：相机在运动过程中，每一时间点的相机中心坐标和相机朝向。

2) 相机的内参：相机在运动过程中，每一时间点的相机视场角。

3) 相机轨迹的来源：属于三维高斯泼溅的采集轨迹/处理轨迹。

上述轨迹参数定义，符合 7.4.1.1 中的描述。

T/XXX XXXX—XXXX

 28

7.4.2.2 相机轨迹外参

相机轨迹外参的存储符合 ISO/IEC 12113:2022 标准 5.5 章节的定义。

7.4.2.3 相机轨迹内参扩展

相机轨迹内参的存储符合 ISO/IEC 12113:2022 标准 5.5 章节中的 animations 字段和 Khronos 组织扩

展 KHR_animation_pointer 的定义，该扩展字段位于 animations.channels.target 字段下。

7.4.2.4 相机轨迹标签扩展

UWA_camera_trajectory_label 扩展，用于指示每组相机轨迹参数的标签信息，包括：

1) 相机轨迹类型：标识对应相机轨迹的类型。

2) 推荐呈现设备：标识对应相机轨迹的推荐呈现设备。

其中，相机轨迹类型：

1）采集轨迹：三维高斯泼溅训练过程原始的相机采集轨迹信息，作为三维高斯泼溅训练的输入视

角。

2）处理轨迹：其他方式计算、设计、生成得到的非采集的相机轨迹。

UWA_camera_trajectory_label 扩展位于 animation 字段下的 extensions 字段下。该扩展用于提供观

看与呈现相关的提示性信息，应用在加载和解析过程中。可选择性使用或忽略该扩展，即使忽略该扩展，

也不应影响资产的正确加载与基本显示。

表42 UWA_camera_trajectory_label扩展的定义

定义 描述符

extensions {

UWA_camera_trajectory_label {

 type st(n)

 devices array

 }

}

其中，type 和 devices 字段如表 43 所示。

表43 UWA_trajectory_reconstruction_label扩展下的字段的定义

名字 类型 默认值 用法 描述

type string N/A O 其值为枚举值，

captured：表示轨迹参数

processed：表示处理轨迹参

数，即非采集的相机轨迹如，

基于采集轨迹计算或生成的

轨迹参数

devices array N/A O 其值显示相机节点的推荐观

看相机。取值如下：

“phone”：手机类移动设备

T/XXX XXXX—XXXX

 29

“hmd”：头戴式显示设备

“tablet”： 平板设备

“tv”： 电视或大屏显示设备

“pc”： 桌面或笔记本计算机

表44 extensionsUsed 列表中声明 UWA_camera_trajectory_label

定义 描述符

extensionsUsed{

UWA_camera_trajectory_label

}

7.4.3 观看约束信息

7.4.3.1 观看约束信息概述

观看约束信息用于描述用户观看三维场景的观看视角范围参数的约束，观看视角范围参数包括观

看角度和观看距离。

观看角度约束用于确保用户的观看角度不超出三维高斯泼溅的重建范围。当用户观看角度超出重

建范围时，可能因高斯泼溅数量不足或数据缺失而导致重建质量下降，产生边缘毛刺、缺面等现象，影

响视觉体验。

观看距离约束用于限定用户与场景中物体之间的最小与最大距离，以防止观看位置过近或与场景

模型重叠。当用户距离场景过近或进入模型内部时，可能产生“穿模”等视觉失真现象，从而降低观看效

果。

观看约束信息的存储可通过扩展 ISO/IEC 12113:2022 标准中的 nodes 字段实现。

7.4.3.2 观看约束信息扩展

UWA_viewing_parameters 扩展，位于 nodes 字段下的 extensions 中，用于存储观看约束信息，该字

段符合 ISO/IEC 12113:2022 规范。

表45 glTF存储观看约束信息的扩展字段 UWA_viewing_parameters

定义 描述符

extensions {

UWA_viewing_parameters {

 modes array

 }

}

其中，modes 为数组字段，对应多种三维资产观看形式。三维资产观看形式包括：以自我为中心的

六自由度观看形式、以对象为中心的六自由度观看形式和三自由度观看形式。

7.4.3.2.1 以自我为中心的六自由度观看形式

T/XXX XXXX—XXXX

 30

以自我为中心的六自由度观看形式对应的 UWA_viewing_parameters.modes 列表成员的定义见表

46 。

以自我为中心的六自由度观看形式下，观察者位于三维场景或模型内部，以第一人称或沉浸式视角

向外观察环境的观看方式。该观看形式的特征包括：

1）观察者处于场景内部；

2）视觉体验以沉浸感和空间一致性为主。

第一人称控制模型是该观看形式下的典型交互控制模型。该模型模拟第一人称观察者的移动与视

角旋转。

表46 以自我为中心的六自由度观看形式对应的 modes列表成员

定义

{

type st(n)

allocentric_6dof {

cameraBoundingBox {

center 3xfp(32)

 size 3xfp(32)

}

}

}

其中，type：字符串，用于指定三维资产观看形式。以自我为中心的六自由度观看形式下，type 取

值 为 "egocentric_6dof"。该字段符合 ISO/IEC 12113:2022 中的定义。egocentric_6dof 结构体的定义见

表 47 。

表47 UWA_viewing_parameters扩展的 egocentric_6dof 结构体的定义

名字 类型 默认值 用法 描述

cameraBoundingBox.center array N/A O 描述相机位置的包围盒中

心坐标。该包围盒限制了相

机可以移动的范围

cameraBoundingBox.size array N/A O 描述相机位置的包围盒在

X、Y、Z 三个轴方向上的边

长。该包围盒限制了相机可

以移动的范围

7.4.3.2.2 以对象为中心的六自由度观看形式

以对象为中心的六自由度观看形式对应的 UWA_viewing_parameters.modes 列表成员的定义见表

48 。

以对象为中心的六自由度观看形式下，观察者位于三维模型或场景之外，观察对象的观看方式。该

T/XXX XXXX—XXXX

 31

观看形式的特征包括：

1）观察者处于模型外部；

2）视觉体验以整体感知与外观展示为主。

轨道球控制模型是该观看形式下的典型交互控制模型。该模型下，相机围绕三维对象或中心旋转及

观看，围绕中心对象进行观察。

表48 以对象为中心的六自由度观看形式对应的 modes列表成员

定义

{

type st(n)

allocentric_6dof {

azimuthRange 2xfp(32)

polarRange 2xfp(32)

distanceRange 2xfp(32)

target 3xfp(32)

targetBoundingBox {

center 3xfp(32)

 size 3xfp(32)

}

}

}

其中，type：字符串，用于指定三维资产观看形式。以对象为中心的六自由度观看形式下，type 取

值 为 "allocentric_6dof"。该字段符合 ISO/IEC 12113:2022 中的定义。allocentric_6dof 结构体的定义见

表 49 。

表49 UWA_viewing_parameters扩展中，modes.allocentric_6dof 结构体的定义

名字 类型 默认值 用法 描述

azimuthRange array [−π,π] O 描述水平环绕的方位角范

围限制，即用户在水平方向

上可旋转的角度范围。其单

位为弧度制

polarRange array [0,π] O 描述垂直环绕的极角范围

限制，即用户在竖直方向上

可旋转的角度范围。其单位

为弧度制

distanceRange array [0, inf] O 描述相机距离交互中心的

距离范围限制

T/XXX XXXX—XXXX

 32

target array [0, 0, 0] O 描述交互中心的坐标

targetBoundingBox.center array N/A O 描述交互中心的包围盒中

心坐标。该包围盒限制了交

互中心可以移动的范围

targetBoundingBox.size array N/A O 描述交互中心的包围盒在

X、Y、Z 三个轴方向上的边

长。该包围盒限制了交互中

心可以移动的范围

7.4.3.2.3 三自由度观看形式

三自由度观看形式对应的 UWA_viewing_parameters.modes 列表成员的定义见表 50 。

三自由度观看形式下，观察者位置固定，仅允许进行旋转观察的观看方式。该观看形式的特征包括：

1）观察者位置固定，不允许在三维场景内移动；仅能进行视角旋转，包括俯仰、偏航以及滚转；

2）视觉体验以方向感知为主，无法获得位置移动带来的透视变化。

表50 三自由度观看形式对应的 modes列表成员

定义

{

type st(n)

egocentric_3dof {

pitchRange 2xfp(32)

yawRange 2xfp(32)

rollRange 2xfp(32)

}

}

其中， type：字符串，用于指定三维资产观看形式。三自由度观看形式下， type 取值为

"egocentric_3dof"。该字段符合 ISO/IEC 12113:2022 中的定义。egocentric_3dof 结构体的定义见表 51 。

表51 UWA_viewing_parameters扩展中，modes.egocentric_3dof结构体的定义

名字 类型 默认值 用法 描述

pitchRange array [−π,π] O 描述俯仰角（上下旋转）的

范围限制，即用户在竖直方

向上可旋转的角度范围。单

位为弧度制

yawRange array [−π,π] O 描述偏航角（左右旋转）的

范围限制，即用户在水平方

T/XXX XXXX—XXXX

 33

向上可旋转的角度范围。单

位为弧度制

rollRange array [−π,π] O 描述滚转角（绕视线方向旋

转）的范围限制，即用户绕

相机前向轴的旋转范围。单

位为弧度制

表52 extensionsUsed 列表中声明 UWA_view_parameters

定义 描述符

extensionsUsed{

UWA_viewing_paramters

}

 音频

音频是三维图像格式的重要组成部分，可以为三维场景提供配套的音频体验。

音频内容在基于 glTF 的三维图像格式中的描述分为两个主要方面，一方面是音频特性描述（如声

源特性、听者信息、音效信息等），另一方面是音频媒体资产描述（如声源编解码类型、播放控制、媒

体资产存储与封装方式等）。

7.5.1 音频特性描述

本文件中的音频特性描述扩展包括两个部分，一是音频特性的整体描述，二是混响模型信息描述。

音频特性的整体描述应符合MPEG-I SD标准（ISO/IEC 23090-14: 2023）的规定。MPEG-I SD标准中

的音频扩展为MPEG_audio_spatial（ISO/IEC 23090-14: 2023标准5.4.1节），规定了声源特性信息、

听者信息、混响参数信息的描述方式。

MPEG-I SD标准中，声源类型包括对象信号（Object）和高阶立体声场信号（HOA）两种，即ISO/IEC

23090-14: 2023标准表14中type字段的取值可以是“Object”或“HOA”。本文件在此基础上扩展支持

立体声信号类型，即type字段的可选值增加“Stereo”类型。

混响模型信息的描述包含在混响模型扩展UWA_audio_reverbModel中，主要包含混响模型名称、混

响模型增益、房间冲击响应参数等。在glTF结构中，UWA_audio_reverbModel扩展应作为顶层扩展引入。

混响模型扩展UWA_audio_reverbModel的定义应符合表53 的规定。

表53 UWA_audio_reverbModel扩展定义

名称 类型 默认值 用法 描述

reverbModels array N/A M 混响模型列表

表53 中，混响模型列表reverbModels中每个列表成员reverbModel包含混响模型的相关参数信息，

其定义应符合表54 的规定。

表54 reverbModel 扩展定义

名称 类型 默认值 用法 描述

name string N/A M 混响模型名称，名称可从混响模型注册

T/XXX XXXX—XXXX

 34

列表中选择，或设定为”custom”，表示

自定义混响模型

reverbGain number 0 O 混响模型增益参数，单位为 dB。默认

值为 0dB

rirSampleRate integer 48000 O 房间冲击响应的采样率，单位为 Hz。默

认值为 48kHz

rirNumChs integer N/A O 房间冲击响应的通道数

rirLength integer N/A O 房间冲击响应（RIR）长度（即采样点数）

rirAccessor integer N/A O 房间冲击响应对应的 accessor 索引，

仅当 name 字段为”custom”时使用

7.5.2 音频媒体资产描述

本文件中音频媒体资产描述应符合 MPEG-I SD 标准（ISO/IEC 23090-14: 2023）的规定。MPEG-I SD 标

准中的媒体资产描述扩展为 MPEG_media（ISO/IEC 23090-14: 2023 中 5.2.1 节），规定了媒体资产的播放

控制信息（如播放起始点、自动播放控制等）、媒体格式信息（MIME 类型、编码器信息等）、媒体索引

信息（如 URI、轨道索引等）等。

需要注意的是，按照第 9 章所述的基于 ISOBMFF 的格式封装方案，三维图像格式中的 glTF 资产、

视频、音频等内容均封装在一个 ISOBMFF 文件中。在此条件下，获取媒体资源的存储位置不需要解析

MPEG_media 扩展 alternatives 列表成员中定义的 uri 字段（URI 通常用于指向外部文件或线上资源）。

为建立 7.5.1 节中所述音频特性描述、本节所述音频媒体资产描述以及媒体资产存储的关联，还

需要定义音频缓冲视图描述扩展 UWA_bufferview_audio。

音频缓冲视图描述扩展 UWA_bufferview_audio 的定义应符合表 55 的规定。

表55 UWA_bufferview_audio扩展定义

名称 类型 默认值 用法 描述

isBitstream boolean N/A M
标记当前 buffer_view 关联的 buffer 是否

保存音频比特流。

若设置为 true，则音频比特流存储在

buffer 中。

若设置为 false，则音频比特流存储在

ISOBMFF 文 件 的 轨 道 中 ， 需 要 从

MPEG_media 扩展中查找轨道索引信息

mediaId integer N/A M
媒体资源索引，

对应 MPEG_media.media 列表中的元素索

引

alternativeId integer N/A O
备选流索引。

对应 MPEG_media.media.alternatives 列表

中的元素索引。

trackId integer N/A O
轨道索引。

T/XXX XXXX—XXXX

 35

对应 MPEG_media.media.alternative.tracks

列表中的元素索引

UWA_bufferview_audio 扩展应包含在 glTF 的 buffer_view 层级，用来指向 MPEG_media 扩展中的媒

体资源描述。

如果 is_bitstream 字段为 true，则音频码流保存在第一个 glTF buffer，即 buffers[0]中，后续写入 GLB

文件的 BIN trunk。buffer_view 指向 buffers[0]中音频码流的起始位置。与 buffer_view 关联的 accessor 的

componentType 应设置为 5120（BYTE，字节类型），type 应设置为 SCALAR（标量类型），count 应设置为

码流数据长度（即字节数）。

如果 is_bitstream 字段为 false，则音频码流保存在 ISOBMFF 文件的轨道中，buffer_view 指向一个新

的 buffer，用来表示音频解码播放过程中的数据缓存 buffer。与 buffer_view 关联的 accessor 的

componentType 应设置为 5126（FLOAT，浮点类型），type 应设置为 SCALAR（标量类型），count 应设置

为解码缓存大小（缓存帧数*声道数*帧长）。

将 MPEG_audio_spatial 扩展中包含的声源信息与媒体资源数据建立关联的过程可以描述为如下步

骤：

第一步，通过 MPEG_audio_spatial 扩展中 sources 列表成员的 accessors 字段，找到声源对应的

accessor，通过 accessor 与 buffer_view 的关联关系找到对应的 buffer_view。

第二步，解析 buffer_view 中包含的音频缓冲视图描述扩展 UWA_bufferview_audio。

若 isBitstream 字段为 true，则音频码流保存在该 buffer_view 对应的 buffer 中，存储起始位置和长

度可以分别由 buffer_view 扩展中的 byteOffset 和 byteLength 字段获得。

若 isBitstream 字段为 false，则音频码流保存在 ISOBMFF 文件的轨道中，通过音频缓冲视图描述扩

展 UWA_bufferview_audio 中的 mediaId、alternativeId、trackId 字段，可以找到对应的 ISOBMFF 轨道，

即轨道索引为 MPEG_media.media.alternative.tracks 列表成员中的 track 字段。

第三步，媒体资源描述，如媒体类型信息 mimeType、编解码配置信息 Codecs 等，可通过

UWA_bufferview_audio 扩展中的 mediaId、alternativeId、trackId 字段，查询 MPEG_media 扩展中的信息

获得。

 渲染空间参数

渲染空间参数支持存储渲染有效空间参数和渲染背景参数，渲染有效空间参数用于定义渲染空间

中的有效区域，渲染背景参数用于定义三维图元在未着色或未覆盖区域中的背景状态。

7.6.1 渲染有效空间参数

渲染有效空间参数用于定义渲染空间中的有效区域。在该区域内的数据被视为有效数据，应参与渲

染。位于该区域之外的数据被视为无效数据，应被裁剪或忽略，不参与渲染。

UWA_scene_clipped 扩展位于 scenes 字段下的 extensions 中。

表56 glTF存储渲染有效空间参数的扩展字段 UWA_scene_clipped

定义 描述符

extensions {

UWA_scene_clipped {

 shapes array

 }

}

其中，shapes 为数组字段，用于存储渲染有效空间参数，用以描述裁剪所采用的几何体形状。该字

段符合 ISO/IEC 12113:2022 规范。

shapes 数组中可包含一个或多个几何裁剪体描述，每个列表成员对应一种几何裁剪体。应用可通过

T/XXX XXXX—XXXX

 36

指定 shapes 数组中的索引，选择其中一个或多个裁剪体进行组合，以构建所需的渲染有效空间。

长方体裁剪体对应的 UWA_scene_clipped.shapes 列表成员的定义见表 57 。

表57 长方体裁剪体对应的 shapes列表成员

定义 描述符

{

type st(n)

clipMode st(n)

box {

center 3xfp(32)

 size 3xfp(32)

}

}

其中，type：字符串，用于指示裁剪体的几何类型。长方体裁剪体，type 取值为 "box"。该字段符

合 ISO/IEC 12113:2022 中的定义。box 结构体的定义见表 58 。

clipMode：字符串，用于指示裁剪体所定义的空间中，哪一部分被视为有效区域。该字段符合 ISO/IEC

12113:2022 中的定义。取值如下

"inside"：表示裁剪体内部的空间被定义为有效区域。位于裁剪体外部的内容必须被裁剪或忽略。

"outside"：表示裁剪体外部的空间被定义为有效区域。位于裁剪体内部的内容必须被裁剪或忽略。

表58 UWA_scene_clipped.shapes扩展下的 box结构体

名字 类型 默认值 用法 描述

center array N/A O 描述长方体的中心坐标

size array N/A O 描述长方体在 X、Y、Z 三

个轴方向上的边长

椭球体裁剪体对应的 UWA_scene_clipped.shapes 列表成员的定义见表 59 。

表59 椭球体裁剪体对应的 shapes列表成员

定义 描述符

{

type st(n)

clipMode st(n)

ellipsoid {

center 3xfp(32)

scale 3xfp(32)

rotation 4xfp(32)

}

T/XXX XXXX—XXXX

 37

}

其中，type：字符串，用于指示裁剪体的几何类型。椭球裁剪体，type 取值为 "ellipsoid"。该字段

符合 ISO/IEC 12113:2022 中的定义。ellipsoid 结构体的定义见表 60 。

表60 UWA_scene_clipped扩展下的 ellipsoid结构体

名字 类型 默认值 用法 描述

center array N/A O 描述椭球体的中心坐标

scale array N/A O 描述椭球体在三个正交轴方

向上的半轴长度

rotation array (0, 0, 0, 1) O 描述椭球体相对其所属坐标

系的旋转方向，采用单位四

元数 (x, y, z, w) 的形式

7.6.2 渲染背景参数

渲染背景参数用于定义三维图元在未着色或未覆盖区域中的背景状态，为渲染系统提供一个明确、

可解析的背景，以避免未定义区域出现不确定的视觉结果。

UWA_spatial_background 扩展位于 scenes 字段下的 extensions 中。其定义的背景模式包括：

1) 纯色背景：以单一颜色填充整个渲染背景区域。

2) 二维图像背景：将单张二维图像映射为渲染背景

3) 全景图像背景：以全景图像的形式包围三维场景，以球面映射的方式进行背景渲染。

4) 基于哈希的背景：以哈希字符串近似表示背景图像。

表61 glTF存储渲染背景参数的扩展字段 UWA_spatial_background

定义 描述符

extensions {

UWA_spatial_background {

 modes st(n)

 }

}

其中，modes 为数组字段，用于存储渲染渲染背景参数，描述渲染背景的定义方式。该字段符合

ISO/IEC 12113:2022 规范。

modes 数组中应包含一个或多个渲染背景模式描述，每个列表成员对应一种渲染背景定义方式。应

用可通过指定 modes 数组中的索引指，选择并切换当前生效的渲染背景模式。

纯色背景对应的 UWA_spatial_background.modes 列表成员的定义见表 62 。

表62 纯色背景对应的 UWA_spatial_background.modes列表成员的定义

定义 描述符

{

type st(n)

T/XXX XXXX—XXXX

 38

 color {

 value 3xi(32)

 colorSpace st(n)

 }

}

其中，type 字段：字符串，用于指定渲染三维图元的渲染背景模式。纯色背景模式下，type 取值为

"color"。该字段符合 ISO/IEC 12113:2022 中的定义。color 结构体的定义见表 63 。

表63 UWA_spatial_background扩展下的 color结构体

名字 类型 默认值 用法 描述

value array (0, 0, 0) M 描述纯色背景的 RGB 分

量，取值范围为 [0, 255]

colorSpace string “REC709-SRGB” O 描述纯色背景所在色彩空

间，即所在色域和使用何种

转换函数

二维图像背景对应的 UWA_spatial_background.modes 列表成员的定义见表 64 。

表64 二维图像背景对应的 UWA_spatial_background.modes列表成员的定义

定义 描述符

{

 type st(n)

 image {

 source i(32)

 rectangle 4xfp(32)

 }

}

其中，type 字段：字符串，用于指定渲染三维图元的渲染背景模式。二维图像背景模式下，type 取

值为"image"，该字段符合 ISO/IEC 12113:2022 中的定义。image 结构体的定义见表 65 。

表65 UWA_spatial_background扩展下的 image结构体

名字 类型 默认值 用法 描述

source integer N/A M 背景图像资源索引，其值指

向 images 中对应的图像

rectangle array (0.0, 0.0, 1.0, 1.0) O 描述用于背景渲染的二维图

像子区域，采用归一化坐标

(x, y, width, height) 表示，其

中各分量取值范围为 [0.0,

T/XXX XXXX—XXXX

 39

1.0]：

x：子区域左下角在源图像中

的水平归一化位置；

y：子区域左下角在源图像中

的垂直归一化位置；

width：子区域宽度，占源图

像宽度的比例；

height：子区域高度，占源图

像高度的比例。

若未指定该字段，则默认使

用整张图像作为背景纹理

全景图像背景对应的 UWA_spatial_background.modes 列表成员的定义见表 66 。

表66 全景图像背景对应的 UWA_spatial_background.modes列表成员的定义

定义 描述符

{

 type st(n)

 panorama {

source i(32)

center fp(32)

radius fp(32)

}

}

其中，type 字段：字符串，用于指定渲染三维图元的渲染背景模式。全景图像背景模式下，type 取

值为" panorama "，该字段符合 ISO/IEC 12113:2022 中的定义。panorama 结构体的定义见表 67 。

表67 UWA_spatial_background扩展下的 panorama结构体

名字 类型 默认值 用法 描述

source integer N/A M 背景图像资源索引，其值指

向 images 中对应的图像

center array (0, 0, 0) O 全景背景图像的环绕中心坐

标。

radius array N/A M 全景背景图像的环绕半径

基于哈希的背景对应的 UWA_spatial_background.modes 列表成员的定义见表 68 。

T/XXX XXXX—XXXX

 40

表68 基于哈希的背景对应的 UWA_spatial_background.modes列表成员的定义

定义 描述符

{

 type st(n)

hash {

value st(n)

hashMode st(n)

}

}

其中，type 字段：字符串，用于指定渲染三维图元的渲染背景模式。基于哈希的背景模式下，type

取值为" hash"，该字段符合 ISO/IEC 12113:2022 中的定义。hash 结构体的定义见表 69 。

表69 UWA_spatial_background扩展下的 hash结构体

名字 类型 默认值 用法 描述

value string N/A M 存储背景图像的哈希表示，

以紧凑的字符串形式描述一

张背景图像的视觉特征

hashMode string N/A M 指定哈希字符串所采用的哈

希编码算法类型，包括：

"blur"：采用 BlurHash 编码

"thumb"：采用 ThumbHash

编码

8 三维高斯泼溅压缩格式和解码

概述

本文件规定了三维高斯泼溅压缩码流格式的语法语义和解码过程，实现将三维高斯泼溅压缩码流

解码为三维高斯泼溅信号，三维高斯泼溅包含的属性符合章节 7.2.1.2.1 的定义。

三维高斯泼溅压缩格式码流结构见 8.2，三维高斯泼溅压缩格式码流语法见 8.3, 三维高斯泼溅压

缩格式码流语义见 8.4，三维高斯泼溅压缩格式码流解码框架见 8.5，三维高斯泼溅压缩格式码流解码

过程见 8.6。

三维高斯泼溅压缩格式码流结构

三维高斯泼溅码流结构如图 4 所示，包含多个单元（unit），每个单元包含 unit header 以及 unit

payload 两个部分，unit header 描述了单元的类型，unit payload 描述了支持的单元类型，单元语法见

8.3.1。

当 unit type 为 0 时，单元为三维高斯泼溅码流的元数据，包含通用的元数据内容和每个子码流元

数据和重建信息。其中通用的元数据内容包含高斯球数目，球谐函数阶数，子码流数目；每个子码流

元数据根据子码流解码方式可包含熵解码所需信息，纹理解码和解包信息或者视频解码和解包信息；

T/XXX XXXX—XXXX

 41

重建信息包含重建属性类型，逆量化，逆预测，逆变换所需的信息。

当 unit type 为 1 时，单元为三维高斯泼溅码流的子码流。

当 unit type 为 2 时，单元为三维高斯泼溅码流的用户自定义数据。

T/XXX XXXX—XXXX

 42

图4 三维高斯泼溅压缩码流结构

语法

8.3.1 基础单元语法

码流基础单元的语法要求应符合表70 的规定

表70 码流基础单元语法表

定义 描述符

unit(numBytesInUnit) {

 unit_header()

 unit_payload(numBytesInUnit - 4)

}

码流基础单元头的语法要求应符合表71 的规定

表71 码流基础单元头语法表

定义 描述符

unit_header() {

 unit_type u(4)

 reserved u(28)

}

码流基础单元内容的语法要求应符合表72 的规定。

T/XXX XXXX—XXXX

 43

表72 码流基础单元内容语法表

定义 描述符

unit_payload() {

 if(unit_type== 0)

 gsbs_metadata()

 if(unit_type== 1)

 gsbs_sub_bitstreams()

 if(unit_type== 2)

 gsbs_user_data ()

}

8.3.2 元数据语法

8.3.2.1 通用元数据语法

码流元数据内容的语法要求应符合表73 的规定

表73 码流元数据内容语法表

定义 描述符

gsbs_metadata (numBytes){

profile_idc u(8)

gs_points_num u(32)

sub_bitstream_num u(5)

SH_degree u(3)

for(i=0； i < 3； i++){

 position_min_value[i] fp(32)

 position_max_value[i] fp(32)

}

gs_subset_num u(8)

for(i=0；i<gs_subset_num；i++){

sub_gs_points_num[i] u(32)

}

for(i=0； i < sub_bitstream_num； i++){

 sub_bitstream_size[i] u(32)

gs_subset_id[i] u(8)

 sub_bitstream_decode_type[i] u(8)

 if(sub_bitstream_decode_type[i] == 0){

 entropy_decode_type[i] u(8)

 attribute_type[i] u(8)

 }

T/XXX XXXX—XXXX

 44

 else if (sub_bitstream_decode_type[i] == 1){

 texture_decode_information[i]()

 texture_packing_information[i]()

 attribute_type[i] u(8)

 }

 else if (sub_bitstream_decode_type[i] == 2){

 video_decode_information[i]()

 video_packing_information[i]()

 }

}

for(i=0；i<gs_subset_num；i++){

reconstruction_count u(8)

for(j=0； j < reconstruction_count； j++){

 reconstruction_information[j] ()

}

}

byte_alignment()

}

 其中general_metadata() 包含gs_points_num，sub_bitstream_num，SH_degree，position_min_value，

position_max_value，gs_subset_num；sub_bitstream_metadata()包含sub_bitstream_size，gs_subset_id，

sub_gs_points_num，sub_bitstream_decode_type和对应的解码和解包信息

8.3.2.2 纹理解码信息和解包信息语法

码流纹理解码信息的语法要求应符合表74 的规定

表74 码流纹理解码信息语法表

texture_decode_information (){

 entropy_decode_type u(8)

 packing_map_texture_codec_id u(8)

}

码流纹理解包信息的语法要求应符合表75 的规定

表75 码流纹理解包信息语法表

 texture_packing_information(){

 packing_map_width u(16)

 packing_map_height u(16)

region_width u(16)

region_height u(16)

packing_scaning_type u(4)

T/XXX XXXX—XXXX

 45

if(packing_scaning_type==1){

 packing_scaning_block_size u(4)

}

packing_region_count_minus1 u(8)

 for(i=0；i<=packing_region_count_minus1；i++){

region_top_left_x[i] u(16)

region_top_left_y[i] u(16)

}

texture_channel_num u(8)

byteshift u(8)

byte_alignment()

}

8.3.2.3 视频解码信息和解包信息语法

码流视频解码信息的语法要求应符合表76 的规定

表76 码流视频解码信息语法表

属性定义 描述符

video_decode_information (){

 packing_map_video_codec_id u(8)

}

码流视频解包信息的语法要求应符合表77 的规定

表77 码流视频解包信息语法表

属性定义 描述符

video_packing_information (){

 packing_map_width u(16)

 packing_map_height u(16)

 region_width u(16)

 region_height u(16)

 packing_map_frame_num_minus1 u(16)

 packing_scaning_type u(4)

 if(packing_scaning_type==1){

 packing_scaning_block_size u(4)

 }

 packing_region_count_minus1 u(8)

 for(i=0；i<= packing_region_count_minus1；i++){

region_frame_index[i] u(8)

 region_top_left_x[i] u(16)

T/XXX XXXX—XXXX

 46

 region_top_left_y[i] u(16)

attribute_type[i] u(8)

attribute_channel_offset[i] u(8)

attribute_channel_num[i] u(8)

byteshift[i] u(8)

 }

byte_alignment()

}

8.3.2.4 表征重建信息语法

码流表征重建信息的语法要求应符合表78 的规定

表78 码流表征重建信息语法表

定义 描述符

reconstruction_information (){

attribute_type u(8)

component u(4)

quantization_type u(4)

quantization_bitdepth u(8)

prediction_type u(4)

if(prediction_type > 1){

 prediction_reserved()

}

transformation_type u(4)

if (transformation_type == 3){

transformation_basis_num u(32)

transformation_basis_dim u(32)

for(i=0； i < transformation_basis_num； i++){

 transformation_basis_vector fp(32)×m

}

for(i=0； i<transformation_basis_dim；i++){

 component_means[i] fp(32)

 component_std[i] fp(32)

}

}

if(transformation_type > 3){

T/XXX XXXX—XXXX

 47

 transformation_reserved()

}

if (quantization_type == 2){

 quantization_min_value fp(32)×n

 quantizaion_max_value fp(32)×n

}

if(quantization_type == 3){

 patch_num u(32)

 for(i=0； i < patch_num； i++){

 patch_size[i] u(32)

 patch_quantization_min_value[i] fp(32)×n

 patch_quantization_max_value[i] fp(32)×n

}

}

byte_alignment()

}

8.3.3 子码流语法

子码流内容的语法要求应符合表79 的规定

表79 子码流语法表

定义 描述符

gsbs_sub_bitstreams (numBytes){

for(i=0； i < sub_bitstream_num； i++){

 gsbs_sub_bitstream_data[i](sub_bitstream_size [i])

}

}

语义

8.4.1 基础单元语义

unit_header()为3DGS压缩码流单元头；

unit_payload()为3DGS压缩码流单元内容；

unit_type为3DGS压缩码流单元类型，取值参见表80 。

表80 3DGS压缩码流单元类型表

unit_type 定义 描述

0 GS_META 对应3DGS元数据单元，载荷为3DGS元数据，包含

T/XXX XXXX—XXXX

 48

高斯球数目，码流数目，球谐阶数等基础字段和每

个子码流解码所需信息

1 GS_SUB_BS 对应3DGS子码流单元，载荷为3DGS子码流。每个

子码流为3DGS一个或多个属性数据编码后的码流

2 GS_USER_DATA 对应用户自定义单元，载荷为用户自定义数据，用

户可对gs_user_data()进行自定义的处理

3-15 GS_RSVD Reserved

gsbs_metadata()为3DGS压缩码流元数据；

gsbs_sub_bitstreams ()为3DGS压缩子码流；

gsbs_user_data ()为用户自定义数据；

numBytesInUnit为单元大小（以字节为单位），解码单元时需要numBytesInUnit，由unit_size得到

该值。

8.4.2 元数据语义

8.4.2.1 通用元数据语义

profile_idc，8bit，为档次标志，规定码流符合的档次，内容见附录A；

gs_points_num，32bit，保存3DGS球的数目；

sub_bitstream_num，5bit，保存子码流数目；

SH_degree，3 bit，保存3DGS球谐的阶数；

gs_subset_num，8bit，保存3DGS子集合的数目，子集合由3DGS模型的一部分数目高斯球构成；

sub_gs_points_num，32bit，保存3DGS子集合高斯球数目，取值小于等于gs_points_num；

sub_bitstream_size，32bit，保存3DGS每个子码流的大小；

gs_subset_id，8bit，保存3DGS子集合的索引。每个3DGS子码流的索引指示子码流对应的3DGS子

集合，具有相同索引的子码流在同一3DGS子集合内。

sub_bitstream_decode_type，8bit，保存3DGS每个子码流的解码方式；‘0’：对子码流进行熵解码，

‘1’：对子码流进行2D纹理解码，‘2’：对子码流进行2D视频解码，‘3-255’，保留；

entropy_decode_type，8bit，熵编码的方式，‘0’：无熵编码，‘1’：zlib熵编码， ‘2’～‘255’：保

留；

reconstruction_count，8bit，保存3DGS重建的数目；用于对3DGS每个子集合的每个属性进行重

建；

attribute_type 8 bit，每个属性的索引，取值参加表81 ；

表81 属性索引表

attribute_type identifier

0 POSITION

1 OPACITY

2 SCALE

3 ROTATION

4 SPHERICAL_HARMONICS_DEGREE_0_COEFFICIENT_0

5 SPHERICAL_HARMONICS_DEGREE_1_COEFFICIENT_0

6 SPHERICAL_HARMONICS_DEGREE_1_COEFFICIENT_1

T/XXX XXXX—XXXX

 49

7 SPHERICAL_HARMONICS_DEGREE_1_COEFFICIENT_2

8 SPHERICAL_HARMONICS_DEGREE_2_COEFFICIENT_0

9 SPHERICAL_HARMONICS_DEGREE_2_COEFFICIENT_1

10 SPHERICAL_HARMONICS_DEGREE_2_COEFFICIENT_2

11 SPHERICAL_HARMONICS_DEGREE_2_COEFFICIENT_3

12 SPHERICAL_HARMONICS_DEGREE_2_COEFFICIENT_4

13 SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_0

14 SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_1

15 SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_2

16 SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_3

17 SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_4

18 SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_5

19 SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_6

20 SPHERICAL_HARMONICS_DEGREE_1_AND_HIGHER

21 Importance

22-255 保留

其中，Position 定义高斯分布在 3D 空间中的中心点坐标（x,y,z），决定了该高斯在场景中的位置。

Opacity 控制高斯的透明程度（范围 0 到 1），0 表示完全透明，1 表示完全不透明；在混合多个高

斯时用于决定其贡献权重（alpha blending）；

Scale 定义高斯分布在三个轴上的缩放系数，控制高斯椭球形状的大小；

Rotation 用四元数（quaternion）表示高斯的方向，控制高斯椭球的朝向；

SPHERICAL_HARMONICS_DEGREE_ ℓ_COEFFICIENT_𝑛存球谐系数 ℓ 阶第𝑛 个分量的系数，能

记录高斯在不同光照方向和视角下的颜色变化；

SPHERICAL_HARMONICS_DEGREE_1_AND_HIGHER包含阶数高于 0 阶的所有球谐系数。通

道顺序为 SPHERICAL_HARMONICS_DEGREE_1_COEFFICIENT_0 (xyz),

SPHERICAL_HARMONICS_DEGREE_1_COEFFICIENT_1

(xyz) …SPHERICAL_HARMONICS_DEGREE_3_COEFFICIENT_6 (xyz)。

Importance: 表示高斯单元的重要程度；

经过变换、预测的属性，采用相同的 attribute_type 指示；

reconstruction_information()为重建所需信息；

texture_decode_information()为2D纹理解码所需信息；

texture_packing_information()为2D纹理打包所需信息，用于指示将包含了多个区域块的纹理解码

数据提取并划分成区域数据；

video_decode_information()为2D视频解码所需信息；

video_packing_information()为2D视频打包所需信息，用于指示将包含了多个区域块的视频解码数

据提取并划分成区域数据；

byte_alignment()函数的定义，如当前位置在字节的边界，则byte_alignment()函数返回 ‘1’，即位流

中的下一位是一个字节的起始位，否则返回‘0’。

8.4.2.2 纹理解码信息和解包信息语义

T/XXX XXXX—XXXX

 50

packing_map_texture_codec_id，8bit，示该子码流包含的 packing map 使用的纹理解码器，取值参

见表82 ；

表82 纹理解码器类型表

packing_map_texture_codec_id 对应解码器

0 未使用纹理解码器

1 ASTC 解码器

2-255 保留

packing_map_width，16bit，表示该子码流包含的 packing map 的宽度；

packing_map_height，16bit，表示该子码流包含的 packing map 的高度；

region_width，16bit，表示region的宽度；

region _height，16bit，表示region的高度；

packing_scaning_type，4bit，表示该子码流包含的排列方式；

packing_scaning_block_size, 4bit，表示该子码流扫描的块大小；

packing_region_count_minus1，8bit，加一表示该子码流包含的 packing map 的区域数量；

region_top_left_x，16bit，表示 region 的左上角样本在 packing map 上的横轴的位置；

region_top_left_y，16bit，表示 region 的左上角样本在 packing map 上的纵轴的位置；

texture_channel_num，8bit，表示纹理包含的通道数量；

byteshift，8bit，表示纹理所编属性量化值的向右偏移位数，无偏移时为 0，有偏移时解码需要向

左偏移对应位数进行恢复。

8.4.2.3 视频解码信息和解包信息语义

packing_map_video_codec_id，8bit，表示该子码流包含的 packing map 使用的视频解码器，取值

参见表83 。

表83 视频解码器类型表

packing_map_video_codec_id 对应解码器
视频解码器标准

Name Profile

0 未使用视频解码

器

1 AVC Progressive

High
ISO/IEC 14496-10 Progressive High as specified in

ISO/IEC 14496-10

2 HEVC Main ISO/IEC 23008-2 Main as specified in ISO/IEC

23008-2

2 HEVC Main 10 ISO/IEC 23008-2 Main 10 as specified in ISO/IEC

23008-2

3 VVC Main 10 ISO/IEC 23090-3 VVC Main 10 as specified in

ISO/IEC 23090-3

4-255 保留

packing_map_width，16bit，表示该子码流包含的 packing map 的宽度；

packing_map_height，16bit，表示该子码流包含的 packing map 的高度；

T/XXX XXXX—XXXX

 51

region_width，16bit，表示region的宽度；

region _height，16bit，表示region的高度；

packing_scaning_type，4bit，表示该子码流包含的排列方式；

packing_scaning_block_size, 4bit，表示该子码流扫描的块大小；

packing_map_frame_num_minus1，16bit，加一表示该子码流包含的 packing map 的帧数；

packing_region_count_minus1，8bit，加一表示该子码流包含的 packing map 的区域数量；

region_top_left_x，16bit，表示 region 的左上角样本在 packing map 上的横轴的位置；

region_top_left_y，16bit，表示 region 的左上角样本在 packing map 上的纵轴的位置；

region_frame_idx，16bit，表示 region 所在的 packing map 的具体维度；

attribute_type，8 bit，每个属性的索引，符合表81 定义；

attribute_channel_num，8 bit, 表示 region 中的数据的有效通道数；

attribute_channel_offset，8 bit, 表示 region 中的数据对应所属属性的 attribute_channel_offset …

attribute_channel_offset+ attribute_channel_num 通道；

byteshift，8bit, 表示视频 packing_map 中每一 region 所编属性量化值的向右偏移位数，无偏移时

为 0，有偏移时解码需要向左偏移对应位数进行恢复。

8.4.2.4 表征重建信息语义

attribute_type，8 bit，每个属性的类型标识，其取值和属性索引表81 对应；

component，4bit，压缩数据的通道数目；

quantization_type，4bit，压缩数据的量化方案，‘0’：不量化，‘1’：均匀标量量化，‘2’：基于最小

最大值的均匀量化，‘3’：分组均匀标量量化，‘4’ 高斯量化； ‘5’ 自适应量化； ‘6-15’ 保留；

quantization_bitdepth，8bit，压缩数据的量化位深；

prediction_ type，4bit，压缩数据的预测方案，‘0’：不预测，‘1’：差分预测，‘2-15’ 保留；

transformation_type，4bit，属性压缩数据的变换方案，‘0’：不变换，‘1’：欧拉角转四元数的变

换； ‘2’：属性基于重要性变换；‘3’：属性PCA变换，‘4-15’ 保留；

transformation_basis_num，32bit，属性压缩数据的变换基数目；

transformation_basis_dim，32bit，属性压缩数据的变换基维度；

transformation_basis_vector，32bit，属性压缩数据的变换基向量；

quantization_min_value，32bit，属性压缩数据的最小值；

quantization_max_value，32bit，属性压缩数据的最大值；

patch_num，32bit，属性压缩数据划分成块的数目；

patch_size，32bit，属性压缩数据划每块的大小。

8.4.3 子码流语义

gsbs_sub_bitstream_data 为 3DGS 子码流压缩数据，包含视频、纹理、熵编码码流，其码流结构、

语义以及解码过程由 codec_type 指定的编解码标准定义，可用符合对应标准的解码器进行解码。每

个子码流数据为三维高斯泼溅一个或多个属性信号的编码后的码流；其中当子码流解码方式为视频解

码或纹理解码时，子码流数据包含每个区域编码后的数据，每个区域为依据视频打包所需信息或纹理

打包所需信息对子码流进行划分得到。

三维高斯泼溅压缩格式解码框架

三维高斯泼溅解码流程见图 5 。首先解析三维高斯泼溅压缩码流，获取元数据和每个子码流数据，

每个子码流为三维高斯泼溅一个或多个属性信号的编码后的码流；然后对每个子码流，依据元数据中子

码流的解码方式进行对应的解码过程，得到每个子码流的解码结果，解码方式包含熵解码、纹理解码和

解包、视频解码和解包三种方式。最后进行对子码流的解码结果进行表征重建，得到解码后的三维高斯

泼溅信号，三维高斯泼溅包含的属性符合章节 7.2.1.2.1 的定义，表征重建包括属性重组合、逆量化、逆

预测和逆变换。三维高斯泼溅压缩格式在传输和分享中可作为独立格式使用。

T/XXX XXXX—XXXX

 52

图5 三维高斯泼溅压缩码流解码框架

解码过程如下

1） 码流解复用

从 3DGS 码流中解析出后续解码所需的元数据以及子码流，具体过程见 8.6.1。

a) 输入：码流

b) 输出：子码流以及元数据

2） 子码流解码

对每个子码流，从元数据中确定子码流解码方式，依据解码方式进行对应的子码流解码，具体过

程见 8.6.2。

a) 输入：子码流和元数据

b) 输出：子码流解码结果

3） 表征重建

从元数据中获取重建相关信息，对 3DGS 解码结果进行重建，并通过数据重排对齐属于同一高斯

单元的属性，具体过程见 8.6.3。

a) 输入：子码流解码结果，元数据

b) 输出：3DGS 属性的解码重建结果

解码过程的伪代码如下：

3DGSDecode() {

#1) 码流解复用

get_metadata()；

for (i = 0； i < sub_bitstream_num； i++) {

 get_sub_bitstream[i]()；

#2) 子码流解码

for (i = 0； i < sub_bitstream_num； i++) {

 switch (sub_bitstream_decode_type[i]) {

 case 0:

 EntropyDecode()

 case 1:

 TextureDecodeAndUnpacking()

 case 2:

T/XXX XXXX—XXXX

 53

 VideoDecodeAndUnpacking()

}

}

#3) 表征重建

Reconstruction()

解码过程

8.6.1 码流解复用过程

码流解复用是从 3DGS 码流单元中提取元数据与子码流，输入输出和流程如下：

a) 输入：一个完整的 3DGS 码流，码流单元符合章节 8.6.1 定义。

b) 输出：sub_bitstream_num 个子码流 gsbs_sub_bitstream_data 和元数据 gsbs_metadata，元数

据结构章节 8.6.2 的定义，子码流结构章节 8.6.3 定义。

输入的 3DGS 码流由一系列单元（Unit）组成。每个单元包含一个单元头（Unit Header）和对应

的单元数据（Unit payload）。单元头中包含字段是 unit_type，用于标识单元的类，其主要包括元数据

和子码流。

解码器首先从输入的码流中解析出单元，并根据单元头类型 unit_type 将其解复用为元数据或子码

流。

—当 unit_type 为 0 时，对 payload 执行元数据解码，具体为按照 8.6.2 元数据语法解析码流中的元

数据信息，将解析后的所有元数据信息输出到解码器的缓冲区，供后续解码阶段使用。

—当 unit_type 为 1 时，对 payload 执行子码流解码，具体为按照 8.6.3 子码流语法提取码流中的子

码流数据，输出到解码器相应的子码流缓冲区中，在后续的解码阶段被进一步解码。

8.6.2 子码流解码过程

8.6.2.1 通则

子码流解码基于 8.6.1 解码得到的元数据，确定子码流的解码方式，并对每个子码流执行具体解

码操作，得到子码流的解码结果，每个子码流对应 3DGS 一个子集合下一个或多个属性信号的编码后

的码流。

a) 输入：待解码的子码流 gsbs_sub_bitstream_data 和元数据 gsbs_metadata。

b) 输出：子码流解码结果 sub_bitstream_decoded_data。

首先，解码器处理第 i 个子码流, i 的范围为 0..sub_bitstream_num-1，从元数据中 gsbs_metadata 解

析第 i 个子码流对应的 sub_bitstream_decode_type[i]字段。

—当 sub_bitstream_decode_type[i]为 0，解码器选择子码流直接熵解码过程，具体的解码步骤遵循

章节 8.6.2.2 的定义。

—当 sub_bitstream_decode_type[i]为 1，解码器选择子码流纹理解码和解包过程，具体的解码步骤

遵循章节 8.6.2.3 的定义。

—当 sub_bitstream_decode_type[i]为 2，解码器选择子码流视频解码和解包过程，具体的解码步骤

遵循章节 8.6.2.4 的定义。

子码流解码的过程如下：

for (i = 0； i < sub_bitstream_num； i++) {

 switch (sub_bitstream_decode_type[i]) {

 case 0:

 sub_bitstream_decoded_data [i] = EntropyDecode(gsbs_sub_bitstream_data [i])

 case 1:

 texture_decoded_sub_bitstream[i] = TextureDecode (gsbs_sub_bitstream_data [i])

T/XXX XXXX—XXXX

 54

sub_bitstream_decoded_data [i] = Unpacking(texture_decoded_sub_bitstream[i])

 case 2:

 video_decoded_sub_bitstream[i] = VideoDecode(gsbs_sub_bitstream_data [i])

sub_bitstream_decoded_data [i] = Unpacking(video_decoded_sub_bitstream[i])

}

}

8.6.2.2 子码流熵解码过程

对子码流进行熵解码的步骤如下：

a) 输入：待解码的子码流 gsbs_sub_bitstream_data 和元数据中的 entropy_decode_type。

b） 输出：子码流解码结果 sub_bitstream_decoded_data。

首先，对选定的第 i 个为直接熵解码的子码流，从元数据中解析第 i 个子码流对应的

entropy_decode_type 字段。

—当 entropy_decode_type 等于 0，进行如下步骤：

 sub_bitstream_decoded_data = gsbs_sub_bitstream_data

 即跳过熵解码步骤，子码流中的数据即为解码后的数据，用于后续的表征重建过程。

—当 entropy_decode_type 等于 1，进行如下步骤：

 sub_bitstream_decoded_data = zlib_decoder (gsbs_sub_bitstream_data)

 即调用 zlib 解码器，对子码流中的数据进行熵解码，获得解码后的数据。

8.6.2.3 子码流纹理解码和解包过程

对子码流进行纹理解码和解包的输入输出和解码流程如下：。

a) 输入：待解码子码流 gsbs_sub_bitstream_data 和元数据中 texture_decode_information 和

texture_packing_information。

b) 输出：子码流解码结果 sub_bitstream_decoded_data。

首先，解码器可在渲染前完成纹理解码或者在渲染时进行纹理解码。当解码在渲染前完成纹理解

码时，解码步骤如下：

图6 在渲染前纹理解码框架

1）对选定为纹理解码和解包的子码流，从元数据中解析 texture_decode_information 字段。按照

texture_decode_information 中的 entropy_decode_type 进行熵解码，得到

entropy_decoded_sub_bitstream，熵解码的方式同 8.6.2.2 中的解码方式。

2）从元数据中解析 packing_map_texture_codec_id 字段； 解码器根据

packing_map_texture_codec_id 获取对应的纹理解码器实例，将熵解码后的码流送入纹理解码器进行解

码，纹理解码器输出解码后的数据。

—当 packing_map_texture_codec_id 等于 0，进行如下步骤：

 texture_decoded_sub_bitstream = entropy_decoded_sub_bitstream

 即跳过纹理解码步骤，子码流熵解码后的数据即为解码后的数据，用于后续的表征重建过

程。

—当 packing_map_texture_codec_id 等于 1，进行如下步骤：

 texture_decoded_sub_bitstream = ASTC_decoder (entropy_decoded_sub_bitstream)

 即调用 ASTC 解码器，对子码流中的数据进行纹理解码，获得解码后的数据。

T/XXX XXXX—XXXX

 55

3）数据解包，依据元数据中的 packing_information 从解码后的数据

texture_decoded_sub_bitstream 中提取每个区域的数据, 进行如下步骤:

首先进行区域元数据解析：从元数据中读取纹理图片的长与宽（packing_map_width,

packing_map_height），每个区域的长与宽（region_width, region_height），从每个 region 中提取数据

的扫描顺序（packing_scaning_type）以及 region 的个数（packing_region_count_minus1）。

然后从每个 region 中解码出每个 3DGS 单元的解码结果，以下为第 n 个 region 的解码步骤，n

的范围为 0.. packing_region_fountcount_minus1：

计算每个 3DGS 单元的属性数据的纹理坐标，其中 i 为第 i 个 3DGS 单元的属性数据，范围为 0..

region_width* region_height -1， region_u[i]和 region_v[i] 分别表示 region 中第 i 个 3DGS 单元的属

性数据在纹理上的横坐标和纵坐标, region_u 的范围为 0..region_width-1, region_v 的范围为

0..region_height-1。

—若 packing_scaning_type 为 0 时进行逐行提取:

 for(i=0； i< region_width* region_height； i++){

 region_u[i] = i % region_width + region_top_left_x[n]；

 region_v[i] = i // region_width + region_top_left_y[n]；

}

—若 packing_scaning_type 为 1 时进行分块逐行提取，其中 packing_scaning_block_size 为块大

小:

 block_num_x = packing_map_width // packing_scaning_block_size；

 for(i=0； i< region_width* region_height； i++){

block_idx = i // (packing_scaning_block_size * packing_scaning_block_size)；

pixel_idx = i % (packing_scaning_block_size * packing_scaning_block_size)；

 block_u = block_idx % block_num_x；

 block_v = block_idx // block_num_x；

 region_u[i] = block_u * packing_scaning_block_size + pixel_idx %

packing_scaning_block_size；

 region_v[i] = block_v * packing_scaning_block_size + pixel_idx //

packing_scaning_block_size；

 region_u[i] = region_u[i] + region_top_left_x[n]；

 region_v[i] = region_v[i] + region_top_left_y[n]；

}

—若 packing_scaning_type 为 2 时进行按照 2D 莫顿顺序提取，其中 2D 莫顿扫描顺序的横坐

标和纵坐标数组为 morton_scaning_u, morton_scaning_v:

 for(i=0； i< region_width* region_height； i++){

 region_u[i] = morton_scaning_u[i] + region_top_left_x[n]；

 region_v[i] = morton_scaning_v[i] + region_top_left_y[n]；

}

4）依据纹理坐标 region_u 和 region_v 将 region 中数据提取到子码流解码结果 decoded_data，其

中 decoded_data [i][j] 为 region 中第 i 个单元第 j 通道的解码结果，texture_decoded_sub_bitstream

[u][v][d] 为纹理坐标为 u,v 通道为 d 的纹理数据，u 的范围为 0..region_width-1, v 的范围为

0..region_height-1, d 的范围为 0.. texture_channel_num-1。提取过程如下：

for(i=0；i< region_width* region_height；i++){

 for(j=0；j< texture_channel_num；j++){

 sub_bitstream_decoded_data [i][j] =

T/XXX XXXX—XXXX

 56

texture_decoded_sub_bitstream[region_u[i]][region_v[i]][j] * (2 ^byteshift)；

}

}

得到每个 region 的子码流解码结果数据用于章节 8.6.3 的区域重建。

当解码器渲染时进行纹理解码时，解码步骤如下：

图7 渲染时纹理解码框架

1）对选定为纹理解码和解包的子码流，从元数据中解析 texture_decode_information 字段。按照

texture_decode_information 中的 entropy_decode_type 进行熵解码，得到

entropy_decoded_sub_bitstream，熵解码的方式同 8.6.2.2 中的解码方式。

2）从元数据中解析 packing_map_texture_codec_id，texture_packing_information 和

reconstruction_information，可上传 GPU，使用 GPU 的解码能力。解码器根据

packing_map_texture_codec_id 获取对应的纹理解码器实例。

3) 在渲染时，当渲染第 i 个 3DGS 单元的属性数据时，其中 i 为第 i 个 3DGS 单元的属性数据，

范围为 0.. region_width* region_height -1， 计算第 i 个 3DGS 单元的第 n 个 region 的属性数据在纹理

上的横坐标和纵坐标 region_u[i]和 region_v[i]，n 的范围为 0.. packing_region_fountcount_minus1，

region_u 的范围为 0..region_width-1, region_v 的范围为 0..region_height-1：

—若 packing_scaning_type 为 0 进行逐行提取:

 region_u[i] = i % region_width + region_top_left_x[n]；

 region_v[i] = i // region_width + region_top_left_y[n]；

—若 packing_scaning_type 为 1 进行分块逐行提取，packing_scaning_block_size 为块大小:

 block_num_x = packing_map_width // packing_scaning_block_size；

block_idx = i // (packing_scaning_block_size * packing_scaning_block_size)；

pixel_idx = i % (packing_scaning_block_size * packing_scaning_block_size)；

 block_u = block_idx % block_num_x；

 block_v = block_idx // block_num_x；

 region_u[i] = block_u * packing_scaning_block_size + pixel_idx % packing_scaning_block_size；

 region_v[i] = block_v * packing_scaning_block_size + pixel_idx // packing_scaning_block_size；

region_u[i] = region_u[i] + region_top_left_x[n]；

 region_v[i] = region_v[i] + region_top_left_y[n]；

—若 packing_scaning_type 为 2 进行按照 2D 莫顿顺序提取，设 2D 莫顿扫描顺序的横坐标和

纵坐标数组为 morton_scaning_u, morton_scaning_v:

 region_u[i] = morton_scaning_u[i] + region_top_left_y[n]；

 region_v[i] = morton_scaning_v[i] + region_top_left_y[n]；

4）依据纹理坐标 region_u 和 region_v 索引纹理，调用 GPU 硬件解码纹理对应区块，而后获取

纹理解码结果，其中 sub_bitstream_decoded_data [i][j] 为 region 中第 i 个单元第 j 通道的解码结

果，texture_data 为压缩纹理数据，由 entropy_decoded_sub_bitstream 的得到，

texturedecode(texture_data, u, v, d) 表示对压缩纹理进行解码，并提取坐标为 u,v，通道为 d 的纹理

值，u 的范围为 0..region_width-1, v 的范围为 0..region_height-1, d 的范围为 0.. texture_channel_num-1。

提取过程如下：

T/XXX XXXX—XXXX

 57

for(j=0；j< texture_channel_num；j++){

 sub_bitstream_decoded_data [i][j] = texturedecode(texture_data, region_u[i], region_v[i], j) * (2

^byteshift[h])；

}

sub_bitstream_decoded_data [i] 将依据 8.6.3 所述过程进一步完成重建。

8.6.2.4 子码流视频解码和解包过程

对子码流进行视频解码和解包的步骤如下：

a) 输入：待解码子码流 gsbs_sub_bitstream_data 和元数据中 video_decode_information 和
video_packing information

b) 输出：子码流解码结果 sub_bitstream_decoded_data。

解码步骤如下：

1）从 video_decode_information 中解析 packing_map_video_codec_id 字段； 解码器根据

packing_map_video_codec_id 获取对应的视频解码器实例，将码流送入视频解码器进行解码。

—当 packing_map_video_codec_id 等于 0，进行如下步骤：

 video_decoded_sub_bitstream = gsbs_sub_bitstream_data

 即跳过视频解码步骤，子码流中的数据即为解码后的数据，用于后续的表征重建过程。

—当 entropy_decode_type 等于 1，进行如下步骤：

 video_decoded_sub_bitstream = AVC_decoder (gsbs_sub_bitstream_data)

 即调用 AVC 解码器，对子码流中的数据进行视频解码，获得解码后的数据。

—当 entropy_decode_type 等于 2，进行如下步骤：

 video_decoded_sub_bitstream = HEVC_main_decoder (gsbs_sub_bitstream_data)

 即调用 HEVC_main 解码器，对子码流中的数据进行视频解码，获得解码后的数据。

—当 entropy_decode_type 等于 3，进行如下步骤：

 video_decoded_sub_bitstream = VVC_main_10_decoder (gsbs_sub_bitstream_data)

 即调用 VVC_main_10 解码器，对子码流中的数据进行视频解码，获得解码后的数据。

2）数据解包，将包含了多个区域块的视频解码数据，根据元数据中的 video_packing_information

提取并成区域数据。

首先进行区域元数据解析：从元数据中读取视频的长与宽（packing_map_width,

packing_map_height）视频的帧数（packing_map_frame_num_minus1），每个区域的长与宽

（region_width, region_height），从每个 region 中提取数据的扫描顺序（packing_scaning_type）以及

region 的个数（packing_region_fount_minus1）。

然后从每个 region 中解码出每个 3DGS 单元的解码结果，以下为第 n 个 region 的解码步骤，n

的范围为 0.. packing_region_fountcount_minus1：

计算每个 3DGS 单元的属性数据的坐标，其中 i 为第 i 个 3DGS 单元的属性数据，范围为 0..

region_width* region_height -1， region_u[i], region_v[i]和 region_frame_index 分别表示 region 中第 i

个 3DGS 单元的属性数据在视频上的横坐标和纵坐标和帧索引, region_frame_index[n]的范围为 0..

packing_map_frame_num_minus1，n 的范围为 0.. packing_region_fountcount_minus1，region_u 的范围为

0..region_width-1, region_v 的范围为 0..region_height-1。提取过程如下：

—若 packing_scaning_type 为 0 进行逐行提取:

 for(i=0； i< region_width* region_height； i++){

 region_u[i] = i % region_width + region_top_left_x[n]；

 region_v[i] = i // region_width + region_top_left_y[n]；

}

T/XXX XXXX—XXXX

 58

—若 packing_scaning_type 为 1 进行分块逐行提取，packing_scaning_block_size 为块大小:

 block_num_x = packing_map_width // packing_scaning_block_size；

 for(i=0； i< region_width* region_height； i++){

block_idx = i // (packing_scaning_block_size * packing_scaning_block_size)；

pixel_idx = i % (packing_scaning_block_size * packing_scaning_block_size)；

 block_u = block_idx % block_num_x；

 block_v = block_idx // block_num_x；

 region_u[i] = block_u * packing_scaning_block_size + pixel_idx %

packing_scaning_block_size；

 region_v[i] = block_v * packing_scaning_block_size + pixel_idx //

packing_scaning_block_size；

 region_u[i] = region_u[i] + region_top_left_x[j][n]；

 region_v[i] = region_v[i] + region_top_left_y[j] [n]；

}

—若 packing_scaning_type 为 2 进行按照 2D 莫顿顺序提取，设 2D 莫顿扫描顺序的横坐标和

纵坐标数组为 morton_scaning_u, morton_scaning_v:

 for(i=0； i< region_width* region_height； i++){

 region_u[i] = morton_scaning_u[i] + region_top_left_x[n]；

 region_v[i] = morton_scaning_v[i] + region_top_left_y[n]；

}

依据坐标将 region 中数据提取到 region 子码流解码结果，其中 sub_bitstream_decoded_data [i][d]

表示 region 中第 i 个单元第 d 通道的解码结果，video_decoded_sub_bitstream [j][u][v][d] 表示第 j

帧坐标为 u,v 通道为 d 的视频解码数据，j 的范围为 0.. packing_map_frame_num_minus1，u 的范围为

0..region_width-1, v 的范围为 0..region_height-1, d 的范围为 0..2，提取过程如下：

for(i=0；i< region_width* region_height；i++){

 for(d=0；d< attribute_channel_num [n]；d++){

 sub_bitstream_decoded_data [i][d] = video_decoded_sub_bitstream [region_frame_index

[n]][region_u[i]][region_v[i]][d] * (2 ^byteshift[region_idx])；

}

}

每个 region 的 sub_bitstream_decoded_data 数据用于章节 8.6.3 的区域重建

8.6.3 表征重建过程

3DGS 属性数据的表征重建过程是将 8.6.2 解码后的子码流数据重建为完整的 3DGS 属性数据，

3DGS 属性数据类型符合章节 7.2.1.2 的定义。表征重建过程首先对得到的子码流进行属性重组合，然

后对每个子集合的每个属性数据进行逆量化、逆预测和逆变换三个步骤，最后将 3DGS 子集合合并，

重建为 3DGS 属性数据，输出结果直接用于后续 3DGS 渲染。

a) 输入：子码流解码结果 sub_bitstream_decoded_data 和元数据中

reconstruction_information；

b) 输出：重建的 3DGS 属性数据 reconstructed_3dgs，符合章节 7.2.1.2 的定义。

T/XXX XXXX—XXXX

 59

图8 表征重建过程

首先，解码器处理第 i 个子码流, i 的范围为 0..sub_bitstream_num-1，从元数据中 gsbs_metadata 解

析第 i 个子码流对应的 sub_bitstream_decode_type[i]字段。

表征重建的步骤如下：

首先，对每个子码流解码后的数据进行重组合，得到每个属性的数据。其中对第 i 个子码流进重组

合, i 的范围为 0..sub_bitstream_num-1：

quantized_data = reorganize(decoded_data)

然后，获取每个属性的重建信息 reconstruction_information，对每个属性进行逆量化，逆预测和逆变

换。其中对 sub_set_id 为 i 的第 j 个属性处理, j 的范围为 0.. reconstruction_count-1：

dequantized_data[i][j] = dequantize (quantized_data[i][j], reconstruction_information[i][j])

depredicted_data[i][j] = depredict (dequantized_data[i][j], reconstruction_information[i][j])

detransformed_data[i][j] = detransform(depredicted_data[i][j], reconstruction_information[i][j])

最后合并得到 3DGS 重建子集合，得到重建的 3DGS 属性数据 reconstructed_3dgs，其中对第 k 个

子集合进行处理，k 的范围为 0.. gs_subset_num-1：

reconstructed_3dgs[attribute_type] = merge(reconstructed_3dgs[attribute_type],

detransformed_data[k][attribute_type])

1）属性重组合是将解码得到的数据重新组合，获得每个属性对应量化数据的过程。

a)输入：sub_bitstream_decoded_data (解码数据), metadata (元数据)

b) 输出： quantized_data[gs_subset_id][attribute_type][gs_points_index][channel_index]（属性量

化数据），其中 gs_subset_id 为 3DGS 子集合序号， attribute_type 为 3DGS 的属性类型，

gs_points_index 表示第 gs_points_index 个高斯球，channel_index 表示第 channel_index 个通道。

初始化所有属性

quantized_data[gs_subset_id][attribute_type][gs_points_index][channel_index] = 0；

对第 i 个子码流进行重组合过程如下：

—当 sub_bitstream_decode_type 为 0 时，即对应获得的熵解码之后的子码流，过程如下：

attribute_channel_num = get_attribute_channel_num (attribute_type)；

 attribute_channel_offset = get_attribute_channel_offset (attribute_type)；

 for (gs_points_index =0； gs_points_index < sub_gs_points_num； gs_points_index ++){

 for(k=0； k< attribute_channel_num；k++){

quantized_data[gs_subset_id][attribute_type][gs_points_index][attribute_channel_offset+k

] = entropy_decoded_data[gs_points_index * attribute_channel_num+k]；

}

}

—当 sub_bitstream_decode_type 为 1 时，即对应获得的纹理解码和解包之后的子码流，解码时按

照 region 顺序重组，不同 region 对应属性的不同通道，对应关系为 c=

attribute_channel_offset+region_idx* texture_channel_num +texture_channel。其中 c 为属性通道，

attribute_channel_offset 为 attribute_id 对应的基础通道偏移，region_idx 为 region 的序号，即为第几

个 region, texture_channel 为数据所在的纹理通道，过程如下：

attribute_channel_num = get_attribute_channel_num (attribute_type)；

 attribute_channel_offset = get_attribute_channel_offset (attribute_type)；

for (j=0；j< packing_region_count_minus1+1；j++){

 for(k=0； k< texture_channel_num；k++){

 for (gs_points_index =0； gs_points_index < sub_gs_points_num[i]； gs_points_index

++){

T/XXX XXXX—XXXX

 60

quantized_data[gs_subset_id[i]][attribute_type][gs_points_index][attribute_channel_

offset+k] = region_decoded_data[j][gs_points_index][k]；

}

attribute_channel_offset = attribute_channel_offset + texture_channel_num；

}

 }

—当 sub_bitstream_decode_type 为 2 时，即对应获得的视频解码和解包之后的子码流，过程如

下：

for (k=0；k< packing_region_count_minus1+1；k++){

frame_idx = region_frame_index[k]；

 for(l=0；l< texture_channel_num[k]；l++){

 for (gs_points_index =0； gs_points_index < sub_gs_points_num[i]；

gs_points_index++){

quantized_data[gs_subset_id[i]][attribute_type][gs_points_index][attribute_cha

nnel_offset[k]+l] = region_decoded_data[frame_idx][k][gs_points_index][l]；

}

}

}

2）对经量化编码的子码流数据执行逆量化，得到逆量化后的数据。量化方式由元数据中的

quantization_method 字段指定：

0：不量化，直接使用原始浮点数据

1：均匀逆量化，使用最大值为 1，最小值为 0 的固定范围进行最大最小值量化

2：基于最大最小值均匀逆量化，从 metadata 中读取子码流的最大最小值

3：分组逆量化，从 metadata 中读取子码流每组的最大最小值

通用逆量化公式：

 dequantized_data=
𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑_𝑑𝑎𝑡𝑎×(𝑚𝑎𝑥 −𝑚𝑖𝑛)

2𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑏𝑖𝑡𝑑𝑒𝑝𝑡ℎ−1
+ 𝑚𝑖𝑛

其中，dequantized_data 为逆量化后的浮点数值，quantized_data 为量化后的整数值，min, max 为

数值范围的最小最大值，quantization_bitdepth 为量化位深。

对于 3DGS 子集合 gs_subset_id 下，属性类型 attribute_type 的量化数据逆量化的具体步骤如下：

a) 输入：quantized_data [gs_points_index][channel_index] (量化数据), metadata (元数据)

b) 输出：dequantized_data [gs_points_index][channel_index] (逆量化数据)

—当 quantization_type 为 0 时，不进行逆量化，即：

 dequantized_data = quantized_data

—当quantization_type为1时，对每一个高斯球的每一个通道进行均匀逆量化，即：

min = 0

 max = 1

 for (d=0； d< component； d++) # 对于每个维度d从0到component

 step = (max[d] - min[d]) / ((1 << quantization_bitdepth) - 1)

for (i=0； i < sub_gs_points_num； i++) # 对于每个数据点i从0到gs_points_num-1

 dequantized_data [i][d] = min[d] + data[i][d] * step

 —当quantization_type为2时，对每一个高斯球的每一个通道进行基于最大最小值的均匀逆量化，

即：

 min = quantization_min_value

 max = quantization_max_value

 for (d=0； d< component； d++)

T/XXX XXXX—XXXX

 61

 step = (max[d] - min[d]) / ((1 << quantization_bitdepth) - 1)

for (i=0； i < sub_gs_points_num； i++)

 dequantized_data [i][d] = min[d] + data[i][d] * step

—当quantization_type为3时，对每一个高斯球的每一个通道进行基于最大最小值的分组逆量化，

即：

 pointer = 0

for (j=0； j < patch_num； i++) # 对于每个块索引j从0到patch_num -1:

 start_index = pointer #起始索引

end_index = pointer + patch_size[j] #结束索引

pointer = pointer + patch_size[j]

 min = quantization_min_value[j]

 max = quantization_max_value[j]

 for (d=0； d< component； d++) # 对于每个维度d从0到component

 step = (max[d] - min[d]) / ((1 << quantization_bitdepth) - 1)

for (i= start_index； i < min(end_index , sub_gs_points_num[i])； i++)

 dequantized_data [i][d] = min[d] + data[i][d] * step

3）对经逆量化的子码流数据执行逆预测，得到逆预测后的数据；

预测方式由元数据中的 prediction_ type 字段指定：

0：无预测，直接使用原始数据

1：差分预测

对于 3DGS 子集合 gs_subset_id 下，属性类型 attribute_type 的逆量化数据逆预测的具体步骤如

下：

a) 输入：dequantized_data [gs_points_index][channel_index] (逆量化数据), metadata (元数据)

b) 输出：depredicted_data[gs_points_index][channel_index] (逆预测数据)

—当 prediction_ type 为 0 时，不进行逆预测，即：

 depredicted_data = dequantized_data

 —当prediction_ type为1时，进行逆差分预测，即：

 depredicted_data [0] = dequantized_data [0] // 第一个元素没有前一个元素，所以直接使用残差

for (i=1； i < gs_points_num； i++) # 对于每个数据点i从0到gs_points_num-1

depredicted_data [i] = dequantized_data [i] + depredicted_data [i-1]

4）对经逆预测的子码流数据执行逆变换，逆变换过程用于将变换域中的数据恢复为原始空间域

数据。

变换方式由元数据中的 transformation_type 字段指定：

0：不变换，直接使用原始数据

1：欧拉角转四元数的变换

2：基于重要性变换，重要性（importance）作为子码流包含的数据类型的一种，attribute_type 符

合表 81 定义，解码过程和属性数据解码过程一致。

3：PCA 变换通用逆量化公式：

对于 3DGS 子集合 gs_subset_id 下，属性类型 attribute_type 的逆预测数据逆变换的具体步骤如

下：

a) 输入：depredicted_data [gs_points_index][channel_index] (逆预测数据), metadata (元数据)

b) 输出：detransformed_data [gs_points_index][channel_index] (逆变换数据)

—当 transformation_type 为 0 时，不进行逆变换，即：

 detransformed_data = depredicted_data

—当transformation_type为1时，对每一个高斯球进行欧拉角转四元数的逆变换，即：for (i=0； i <

T/XXX XXXX—XXXX

 62

gs_points_num； i++) # 对于每个数据点i从0到gs_points_num-1

 // 提取欧拉角（弧度）

 euler_x[i] = depredicted_data[i][0]

 euler_y[i] = depredicted_data[i][1]

 euler_z[i] = depredicted_data[i][2]

 // 根据旋转顺序转换为四元数

 quaternion = euler_to_quaternion(euler_x, euler_y, euler_z)

 // 存储四元数（w, x, y, z顺序）

 detransformed_data[i][0] = quaternion[i].w

 detransformed_data[i][1] = quaternion[i].x

 detransformed_data[i][2] = quaternion[i].y

 detransformed_data[i][3] = quaternion[i].z

—当transformation_type为2时，对每一个高斯球进行基于重要性的逆变换，即：for (i=0； i <

gs_points_num； i++) # 对于每个数据点i从0到gs_points_num-1

 detransformed_data[i] = depredicted_data[i] / importance[i]

 —当transformation_type为3时，对每一个高斯球进行基于PCA的逆变换，即：

for (i=0； i < gs_points_num； i++)

for (j=0； j < transformation_basis_dim； j++)

detransformed_data[i][j] = 0

for (k=0； k <component； k++)

depredicted_data [i][j] += depredicted_data[i][k] * eigenvectors[k][j]

 detransformed_data[i][j] = detransformed_data[i][j] * component_std[j] +

component_means[j]

// 辅助函数：XYZ顺序欧拉角到四元数转换

FUNCTION euler_to_quaternion (x, y, z)

 // 计算四元数分量

 qw = cos(x/2) × cos(y/2) ×cos(z/2) + sin(x/2) × sin(y/2) × sin(z/2)

 qx = sin(x/2) × cos(y/2) × cos(z/2) - cos(x/2) × sin(y/2) × sin(z/2)

 qy = cos(x/2) × sin(y/2) × cos(z/2) + sin(x/2) × cos(y/2) × sin(z/2)

 qz = cos(x/2) × cos(y/2) × sin(z/2) - sin(x/2) × sin(y/2) × cos(z/2)

 return quaternion (qw, qx, qy, qz)

5）最后合并得到 3DGS 重建子集合，得到重建的 3DGS 属性数据 reconstructed_3dgs。；

a) 输入：detransformed_data (逆变换数据), metadata (元数据)

b) 输出：reconstructed_3dgs (重组合后的 3DGS 数据)

 对第i个子集合进行合并，i的范围为0.. gs_subset_num-1，过程如下：

reconstructed_3dgs[attribute_type] = merge(reconstructed_3dgs[attribute_type],

detransformed_data[gs_subset_id[i]][attribute_type])

 得到的reconstructed_3dgs 即为重建后的3DGS属性数据，符合章节7.2.1.2的定义，可用于3DGS的

渲染。

9 基于 ISOBMFF的三维图像格式封装

概述

基于 ISOBMFF 的三维图像格式封装的描述包含基于 ISOBMFF 封装 glTF 的规范，遵循 ISOBMFF

标准的 MP4 封装实例和 HEIF 封装实例，符合 ISO/IEC 14496-12 中的定义。其中 ISOBMFF 为通用媒

体容器格式标准，定义了在文件中存储视频、音频、字幕、元数据等各种媒体数据的通用规则和结构，

glTF 文件为第 7 章中规范的基于 glTF 存储三维图像格式。基于 ISOBMFF 封装 glTF 的规范定义了在

ISOBMFF 基础容器格式上存储 glTF 的方案，见章节 9.2；MP4 封装实例定义了采用 MP4 格式封装视

频，封面和 glTF 文件的方法，见章节 9.3；HEIF 封装实例定义了采用 HEIF 格式封装图片和 glTF 文件

的方法，见章节 9.4。

T/XXX XXXX—XXXX

 63

基于 ISOBMFF封装 glTF规范

9.2.1 概述

基于 ISOBMFF 定义封装 glTF 规范，符合 ISO/IEC 14496-12 中的定义，其中 glTF 文件为第 7 章中

规范的基于 glTF 存储三维图像格式；且包含从 ISOBMFF 文件格式中解封装出 glTF 文件的方法。

ISOBMFF 文件格式中包含 ftyp，其声明了文件类型和 brand，其中 compatible_brands 应包含 glti，

表明包含 glTF 数据；包含 meta，用于存储 glTF 文件，其中 glTF 文件符合 ISO/IEC 12113:2022 中的定

义。

9.2.2 基于 ISOBMFF封装 glTF格式要求

封装 glTF 格式包含 brand “glti”, 文件应符合本条款中定义的约束条件:

a) file 层级应包含一个 meta 的 box。

b) meta 中包含一个 hdlr 的 box。

c) 当 hdlr 中的 handler_type 为 gltf 时，meta 下子 box 格式符合 ISO/IEC 23090-14 中定义，其中

应包含 PrimaryItemBox，该 PrimaryItemBox 的 primary item 为 'model/gltf+json' 或 'model/gltf+binary'。

d) 当 hdlr 中的 handler_type 不为 gltf 时，文件格式应满足：

 1) 包含‘iinf’ 且符合以下条件：

‘iinf’中应包含 glTF 格式文件对应的全部 infe item，每个 infe item 包含标识项号（item_ID）、

内容类型（content_type）； 用于容纳 glTF 格式文件类型。

‘iinf’中可包含非 glTF 格式文件对应的 infe item。

其中，iinf 的 version 可为 0 或者 1；每个 infe 的 version 可为 0，infe 的 item_protection_index

可为 0；

其中，JSON 格式的文件（.gltf）文件对应内容类型（content_type）为 model/gltf+json；

二进制(.bin)文件对应内容类型（content_type）为 application/gltf-buffer；

GLB 格式的文件 (.glb)对应内容类型（content_type）为 application/gltf-binary。

 2）包含‘grpl’ 且符合以下条件：

‘grpl’中应包含 glTF 格式对应的分组 box ‘glTF’，

‘grpl’中可包含非 glTF 格式文件对应的分组 box；

其中‘glTF’可以包含 group_id ，num_entities_in_group 和每个 entity_id；每个 entity_id 分别

对应 infe item 中的 item_ID。用于容纳 glTF 格式文件分组。

 3）包含‘iloc’ 且符合以下条件：

‘iloc’ 应包含 glTF 格式每个文件对应的项，每项包含 item_ID, extent_offset, extent_length，可

包含 construction_method；item_ID 和 1)中的项对应； extent_offset 和 extent_length 来指示 glTF 格式每

个 item 存储的偏移和长度。用于容纳 glTF 格式文件位置。

‘iloc’中可包含非 glTF 格式文件对应的文件位置项；

其中，iloc 的 version 可为 1 或者 2，construction_method 可以为 0，1 或者 2，指示 item 项文

件存储在 file, idat 或 item 中。

4）包含 glTF 格式的每个 item 码流，其存储在 MP4 的位置（file, idat 或 item）中，和 iloc 中

的 construction_method 对应，且该码流的起始位置和长度对应‘iloc’中的 item_ID 同 1)的项的

extent_offset, extent_length。

 5）包含‘iref’ 且符合以下条件：

‘iref’ 的 referenceType 应设置为'auxl'；

当 item 包含参考 primary item 的 gltf 项时，‘iref’ 的 ref_count 应为 1，to_item_id 应为 primary

T/XXX XXXX—XXXX

 64

item 的 id。

9.2.3 获取 glTF资产格式的过程

输入：符合第 9.2.2 章中封装 glTF 格式文件结构；

输出：符合第 7 章中的 glTF 格式的三维图像格式；

过程如下：

a) 解析 ftyp，查看支持的 brand； brand 包含’glti’时进行后续处理，否则不进行后续处理；

b) 解析 meta，且应使用 9.2.2 b)获取 hdlr；

c) 当 hdlr 中的 handler_type 为 gltf 时，依据 9.2.2 c) 获取 glTF 格式文件，获取过程符合

ISO/IEC 23090-14 中定义；

d) 当 hdlr 中的 handler_type 不为 gltf 时，依据 9.2.2 d) 获取 glTF 格式文件，获取过程:

应获取 grpl，且获取 grpl 中的 gltf box，如存在 grpl 且 grpl 中存在 gltf box 时：

解析 glTF 文件的流程如下：

1）从 gltf box 的组中获取 glTF 格式文件分组，其中 gltf box 数据符合 9.2.2 d) 2)；

2）依据 gltf box 中的 entity_id，从 iinf 中对应 infe 获取中的 glTF 格式文件类型；

3）从 9.2.2 d) 3) iloc 中对应的 item 获取 glTF 格式文件位置 extent_offset，extent_length，可获

取 construction_method；

4）依据 3）中的文件位置，从码流中获取 gltf 文件的项目；

5）可从 9.2.2 d) 5) iref 中获取 glTF 的 referenceType 和对应的 primary item。

解析 meta 下非 glTF 文件对应项的流程如下：

1）从 iinf 中获取非 glTF 对应的其余 infe 类型；

2）从 iloc 中获取非 glTF 对应的其余 item 的位置 extent_offset，extent_length，可获取

construction_method；

3）依据 2）中的文件位置从码流中获取全部文件的项目。

基于 MP4的三维图像格式封装实例

9.3.1 概述

基于 MP4 文件格式规范封装视频，封面和 glTF-文件的方法，符合 ISO/IEC 14496-14 中的定义，其

中 MP4 文件为 ISOBMFF 格式的一种封装实例；且包含从 MP4 文件格式中解封装出视频，封面和 glTF

文件的方法。

MP4 文件格式中包含 ftyp，其声明了文件类型和 brand，其中 compatible_brands 应包含 isom， mp42

等视频格式中的至少一种，表明文件格式中包含视频；且包含 glti，表明包含 glTF 数据；MP4 文件格

式包含 mdat，用于存储视频的数据；MP4 文件格式包含 moov，用于存储视频的数据描述信息；MP4 文

件格式包含 meta，用于存储 glTF 文件，其中 glTF 文件符合 ISO/IEC 12113:2022 中的定义。

图9 六自由度动态图像格式封装结构。

表84 六自由度动态图像格式封装结构

T/XXX XXXX—XXXX

 65

ftyp FileTypeBox

mdat MediaDataBox

moov MovieBox

 trak TrackBox

meta MetaBox

 hdlr HandlerBox

 grpl GroupsListBox

 gltf

 iinf ItemInfoBox

 infe mime: gltf+json

 infe mime: gltf-buffer

 iloc ItemLocationBox

 idat ItemDataBox

9.3.2 封装视频

符合 ISO/IEC 14496-14 的定义。

9.3.3 封装封面

封面信息用于在不影响视频播放内容的前提下，为媒体文件提供封面图像显示功能，支持在播放器

或媒体管理系统中展示视频的静态缩略图或封面图。

封装封面遵循 ISO/IEC 14496-12 定义的基础文件结构，封面图像通过 covr box 进行封装，其结构

层级如表 85 所示。

表85 六自由度动态图像格式封装封面结构

moov

 udta

 meta

 ilst

 covr

其中 covr box 是 Cover Art 的容器，用于存储封面图像的相关信息，它包含一个或多个 data box，

每个 data box 为一张封面图像。封面图像不参与视频的时间轴播放，但播放器或内容呈现系统可以通

过它在播放前提供静态预览或缩略图，从而提升用户体验。data box 中包含 data_type，用于指定图像格

式，其中 PNG 对应 0x0E，JPEG 对应 0x0D，BMP 对应 0x1B；data_payload 为封面图像的完整字节

序列。

9.3.4 封装 glTF三维图像格式

T/XXX XXXX—XXXX

 66

符合本规范章节 9.2.2 的定义。

基于 HEIF的三维图像格式封装实例

9.4.1 概述

基于 HEIF 文件格式规范封装图片和 glTF 文件的方法，符合 ISO/IEC 23008-12 中的定义，其中 HEIF

文件为 ISOBMFF 格式的一种封装实例，glTF 文件为第 7 章中规范的基于 glTF 存储三维图像格式。

HEIF 文件格式中包含 ftyp，其声明了文件类型和 brand，其中 compatible_brands 应包含 mif1，heic

等图片格式中的至少一种，表明文件格式中包含视频；且包含 glti，表明包含 glTF 数据。HEIF 文件格

式包含 meta，用于存储图片文件和 glTF 文件，其中 meta 应符合以下规范：

1）meta 的 hdlr 盒子中的 handler_type 应为'pict'；

2）meta 的 iinf 盒子包含图片文件和 glTF 文件的数据项（infe）；其中一个或多个类型为 glTF 文件

的数据项，用于封装三维图像格式对应的 glTF 文件，一个或多个图片的数据项，用于封装三维图像格

式对应的图片，图片数据项的类型取决于数据项对应图片的编码格式，比如将以 HEVC 编码的图片封

装为数据项时，图片数据项的类型应为'hvc1'或'lhv1'。

9.4.2 封装图片

符合 ISO/IEC 23008-12 的定义。

9.4.3 封装 glTF三维图像格式

符合本规范章节 9.2.2 的定义。

T/XXX XXXX—XXXX

 67

附 录 A

（规范性）

档次

A.1 概述

档次提供了一种定义本文件的语法和语义的子集的手段。档次对码流进行了各种限制，同时也就规

定了对某一特定码流解码所需要的解码器能力。档次是本文件规定的语法、语义及算法的子集。符合某

个档次规定的解码器应完全支持该档次定义的子集。

本附录描述了不同档次所对应的各种限制。所有未被限定的语法元素和参数可以取任何本文件所

允许的值。如果一个解码器能对某个档次所规定的语法元素的所有允许值正确解码，则称此解码器在这

个档次和级别上符合本部分。如果一个码流中不存在某个档次所不允许的语法元素，并且其所含有的语

法元素的值不超过此档次所允许的范围，则认为此码流在这个档次上符合本部分。

profile_idc定义了码流的档次和级别。

A.2 档次

本部分定义的档次见表A.1.

表 A.1 档次

profile_idc

的值

档次 描述

0 通用档次（general profile） 对应使用通用档次工具压缩的码流，支持8.6中

所有配置。

1 基础档次（Main profile） 对应使用基础档次工具压缩的码流，包含视频

或者纹理解码配置约束

2 快速档次（Fast profile） 对应使用快速档次工具压缩的码流，仅包含

8.4.2.2中规定的熵解码压缩

其他 保留 保留

通用档次的码流中，profile_idc的值应为0，支持8.6中所有配置，所有字段取值限制都是在解码

码流时规定的限制，无额外的约束条件。

基础档次的码流应满足以下条件：

——profile_idc的值应为1

——所有entropy_decode_type的值应为0或者1

——所有packing_map_texture_codec_id的值应为0或者1

——所有packing_map_video_codec_id的值应为0或者2

——所有transformation_type的值应为0，1或者2

快速档次的码流应满足以下条件：

——profile_idc的值应为2

——gs_subset_num的值应为1

——所有sub_bitstream_decode_type的值应为0

——所有entropy_decode_type的值应为1

——所有quantization_type的值应为2

——所有prediction_type的值应为0

——所有transformation_type的值应为0

T/XXX XXXX—XXXX

 68

附 录 B

（资料性）

三维高斯泼溅的 HDR渲染参数使用推荐方案

B.1 三维高斯泼溅的 HDR/SDR渲染选择推荐方案

使用 glTF 存储的三维高斯泼溅文件中可能包括 HDR 元数据和色彩空间信息，为了保证渲染结果的

跨端一致性，推荐在不同设备上采用一致的策略选择 HDR/SDR 渲染，推荐的选择方案参见表 B.2。

表 B.3 三维高斯泼溅的 HDR/SDR 渲染选择推荐方案表

HDR 元数据 色彩空间 策略

可获取 可获取 使用获取的 HDR 元数据和色彩空间做 HDR 渲染

可获取 不可获取 默认使用 REC709 色域和 sRGB 传递函数做 HDR 渲染

不可获取 可获取
如果色彩空间是 REC709 色域和 sRGB 传递函数则做 SDR 渲

染，否则做 HDR 渲染

不可获取 不可获取 默认使用 REC709 色域和 sRGB 传递函数做 SDR 渲染

B.2 三维高斯泼溅的混合色彩空间渲染推荐方案

考虑到实际应用场景中，可能出现来源不同的三维高斯泼溅需要混合渲染到同一场景中的情况，因

此在每个三维高斯泼溅投影到二维平面上做色彩混合（alpha blending）之前，需要将其色彩空间与三维

高斯泼溅的色彩空间统一，以保证混合结果正确。对此，推荐的实现方案如下：

1. 确认纹理色彩空间

推荐将所有三维高斯泼溅的色彩空间中色域范围最广的色彩空间作为纹理色彩空间，将所有

三维高斯泼溅统一渲染到该色彩空间。

2. 逐三维高斯泼溅混合渲染

逐三维高斯泼溅渲染投影、转换色彩空间，混合到纹理，推荐每个三维高斯泼溅图元的处理

步骤如下图所示：

T/XXX XXXX—XXXX

 69

图 B.1 三维高斯泼溅的混合色彩空间渲染流程

图中虚线框为可选步骤，当三维高斯泼溅的色彩空间与纹理色彩空间相同时，无需转换到三维高

斯泼溅色彩空间。

B.3 三维高斯泼溅的 HDR元数据相机参数使用推荐方案

由于拍摄场景不同视角的明暗特点存在差异，三维高斯泼溅的重建过程中在不同视角获得的动态

元数据存在差异，因此在存储动态元数据时应选择明暗特征有代表性的视角的动态元数据，同时记录每

个视角的相机参数。在重建时，可根据当前渲染相机参数和动态元数据的相机参数计算插值权重，对记

录的动态元数据进行插值计算得到当前渲染相机位置应使用的动态元数据，可使用相机之间的欧氏距

离权重等方法来计算插值权重。

T/XXX XXXX—XXXX

 70

参 考 文 献

[1] Kerbl B, Kopanas G, Leimkühler T, et al. 3d gaussian splatting for real-time radiance field

rendering[J]. ACM Trans. Graph., 2023, 42(4): 139:1-139:14.
[2] https://www.khronos.org/files/gltf20-reference-guide.pdf

https://www.khronos.org/files/gltf20-reference-guide.pdf

